StorageMax 901 Proctor

Zebulon, NC **Wake County**

EROSION CONTROL CALCULATIONS

July 1, 2023 Revised: January 17, 2024

Prepared for:

Robert High Development, LLC 324 Greenville Ave. Wilmington, NC 28403

StorageMax Erosion Control

Project Name: StorageMax

901 Proctor Ave. **Project Address:**

Zebulon, NC

Pins: 2706217463

Latitude: 35.840297 Longitude: -78.315683

Heavy Commercial (HC) Zoning:

River Basin: Neuse

Watershed: **Moccasin Creek**

HUC: 03020203

Robert High Development, LLC Developer:

> 324 Greenville Ave. Wilmington, NC 28403

Telephone: (919) 604-0505

Email: Storit@AOL.com

Site Description

The project consists of a single parcel located at the intersection of Proctor Avenue and Shepard School Road near downtown Zebulon. The lot is approximately 6.50 acres (283,140 sq feet). The parcel is vacant with grassy vegetation and a wooded area along the property lines. There is 0 sq ft of existing impervious area on the site. The project will consist of a commercial building and the impervious area post development will be 3.64 acres, or approximately 56% of the gross site.

Road widening along Shepard School Road is included with the project as a requirement of the Town of Zebulon.

Erosion Control

Analysis for the skimmer basins used the NCDEQ Tool to size the skimmer and sediment basins.

Total disturbance is approximately 5.93 acres on site and 0.64 acres in the Shepard School Road right-of way.

The site does not have an area of wetlands and is not located within a flood zone as noted per FEMA map 3720270600K, Dated July 19, 2022. However, there is an intermittent stream located along the Southeast portion of the site and an offsite pond on an adjacent north parcel. No grading activities or disturbance is planned within the buffers.

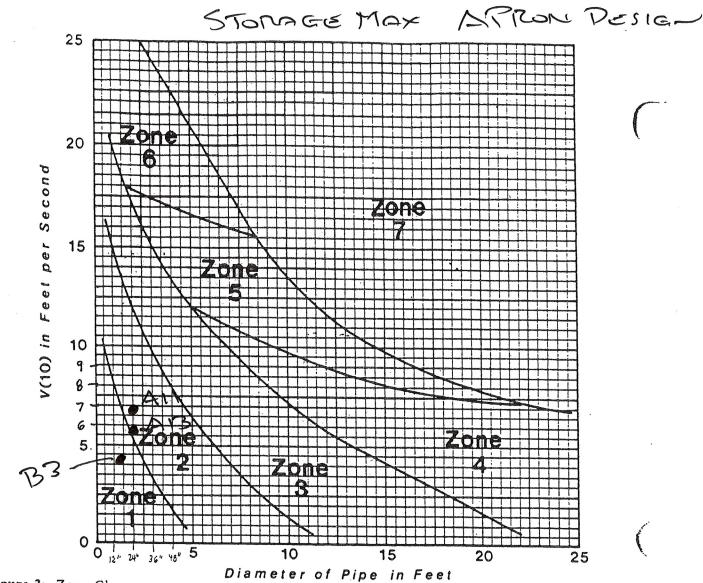


Figure 3: Zone Chart.

		W			
ZONE	APRON MATERIAL	CLASS OF STONE	SIZE OF STONE	LENGTH OF APRON	MINIMUM THICKNESS OF STONE
1.	STONE	FINE	3 "	4 X D	9"
2	STONE	LIGHT	6"	.6 X D	12"
3	STONE	MEDIUM	13"	8 X D	18"
4	STONE	HEAVY	23"	8 X D	30"
5	STONE	HEAVY	. 23"	10 X D	30"
6	STONE	HEAVY	23"	12 X · D	30"
7	SUCH AS A	STILLING	BASIN, II		OF DEVICE, CTURE, ETC.

Figure 4: Apron Dimensions

CHART 2: Precalculated Apron Sizes for Maximum TW Conditions

Apron Sizing Based on NCDENR Charts for Sizing

Sizing	ZONE 3/4 APRONS - Class 1 Rip Rap Pipe Diameter L W T L W T Inch ff ff ff ff ff fr fr Inch ff ff ff ff fr fr fr Inch ff ff ff ff ff fr fr Inch ff ff ff ff ff ff ff ff Inch ff ff	NS - Class 2 Rip Rap Inlet L W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L W M T L W M T L W M T L W M T L W M T L W M T L W M T L W M T L W M T L W M M T L M M M M M M M M M M M M M M M M
Apion Sizing Based on NCDENR Charts for Sizing	20NE 3/4 APR Pipe Diameter Inch 18 24 24 24 42 48 66 1	
sed o		A 13
ZONE 1 APRONS - Class A Erosion Control Stone	Inlet	ZONE 2 APRONS - Class B Erosion Control Stone Pipe Diameter L W T L W T 1/2 3 1 1 1 W T 1/2 3 1 1 W T 1/2 3 3 1 1 W T 1/2 3 3 1 1 W T T 24 6 1 1 8 7 5 1 18 18 30 7 7 5 1 6 1 8 1
ZONE 1 APRC	Pipe Diameter inch (2) (2) (3) (3) (3) (4) (4) (5) (5) (6)	ZONE 2 APRON Pipe Diameter Inch 12 18 24 30 15 42 42 48 60 11 60 11

AII APPOR PESIGN

Line ID		A10-A11	A6-A10	A5-A6	A4-A5	A3-A4	A2-A3	A1-A2	A9-A10	A8-A9	A7-A8					
Minor Loss	(L)	0.56	0.33	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a					
JLC	(X)	1.00	1.50	0.50	0.59	1.50	1.35	1.00	0.70	0.82	1.00					
Energy Loss	(#)	0.546	0.145	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
Line		-	2	3	4	2	9	7	8	6	10					

1313

ARRON DESIGN

		, , , , ,	. 01-					
MANNING	S'S EQUAT	ION FOR PI	PE FLOW	I				
Project:		StorageMax		Location:	BMP Outlet			
By:			Date:					
Chk. By:			Date:			mdo	version 12.8.0	0
								ear Data
				θ			En	try Cells
							INPUT	
		_				D=		inches
NA		1				d=		inches
Mannings	Formula	d	($\overline{}$	→)	n= θ=		mannings coe degrees
Q=(1.486/	/n)AR _h ^{2/3} S ^{1/}	12		D		S=		slope in/in
L (R=A/P					O	0.000	
	A=cross sect	tional area						
	P=wetted per	rimeter			$V=(1.49/n)R_h^2$	^{/3} S ^{1/2}		
	S=slope of cl				$Q=V \times A$			
	n=Manning's	roughness coeff	ficient					
		vvettea	Hydraulic	Solution to Ma	annings Equation		Mannir	g's n-values
	Area,ft ²	Perimeter, ft	Radius, ft	velocity ft/s	flow, cfs		PVC	0.01
	3.02	5.11	0.59	5.69	17.15		PE (<9"dia)	0.015
							PE (>12"dia)	0.02
		-14					PE(9-12"dia)	0.017
							CMP	0.025
	Croated by:	Mika O'Shaa					ADS N12 HCMP	0.012 0.023
	Created by:	Mike O Shea			*		Conc	0.023
							00110	0.010
						į.		

B3 ARREL Design

(ft) (sqth) (ftvs) (ft) (ft) (%) (0.87 0.92 3.22 0.16 309.27 0.602 0.16 0.39** 0.33 3.01 0.14 309.53 0.000 0.14 0.39** 0.39** 0.39** 0.39** 0.39** 0.39** 0.39** 0.39** 0.39** 0.39** 0.39** 0.30** 0.	E S	Pipe Q Size Q	Inv Elev Dn	HG D HG	Depth Dn	Area Dn	Veloc Dn	Vel Hd Dn	ם	Line Length	Inv Elev Up	로 라	Depth Up	Area Up	Veloc Up	Vel Hd Up	ם 막	<u></u>	중요	Ave Ave
2.95 307.65 308.43 0.66 0.70 4.25 0.28 308.14 309.23 309.10 0.87 0.92 3.22 0.16 399.27 0.00 0.00 0.98 308.43 309.64 309.10 0.83 309.10 0.03 309.10 0.03 309.10 0.03 0.01 0.00	<u>-</u>		(£)	(#)	(ft)	(sdft)	(#/s)	(ft)		(#)	(#)	(#)	(#)	(sdft)	(ft/s)	(#)	(#)	(%)	(%)	(%)
10.38 308.43 309.18 0.75 0.33 1.27 0.14 309.33 90.200 309.39 0.39** 0	5	V		308.34	69.0	0.70	4.25	0.28		143.000	308.24	309.10	0.87	0.92	3.22	0.16	309.27	0.602	0.300	0.451
	TC)			309.18	0.75	0.33	1.27	0.14	309.33	90.200	309.00	309.39 j	0.39**	0.33	3.01	0.14	309.53		0.000	0.000
	1																			
	red.																			
							,													

Line ID		B2-B3	B1-B2									
Minor Loss	(L)	0.08	n/a									
JLC Coeff	<u>(</u>	0.50	1.00 z									
Energy Loss	(#)	0.645	0.000									
Line		-	2									

Citatilier Design Carculations	Flow Channel Side Bottom Depth of Velocity	r cfs Slope, ft/ft n S		5.38 9.1	5:38 3.3 0.0095	5.38 2.0	538 13 00196 0020 300 00 037 326 Jute Mesh
		,					
	-	t C	0.55	0.55	0.55	0.55	0.55
	Channel		8	-	2	4	9
		Length, ft	290	155	211	229	306
	Drain	Area, ac	1.26	1.25	1.12	89.0	0.45
		Channel	TD1	TD2	TD3	TD4	TD5

Temporary Sediment Trap 3

Okay

- 0.44 Disturbed Area (Acres)
- 5.38 Peak Flow from 10-year Storm (cfs)
- 1584 Required Volume ft³
- 2344 Required Surface Area ft²
- 34.2 Suggested Width ft
- 68.5 Suggested Length ft
 - 40 Trial Top Width at Spillway Invert ft
 - 60 Trial Top Length at Spillway Invert ft
 - 2 Trial Side Slope Ratio Z:1
 - 2 Trial Depth ft (1.5 feet below grade + 2 to 3.5 feet above grade)
 - 32 Bottom Width ft
- 52 Bottom Length ft
- 1664 Bottom Area ft²
- 4043 Actual Volume ft³ Okay
- 2400 Actual Surface Area ft²
 - 10 Trial Weir Length ft
 - 0.5 Trial Depth of Flow ft
- 10.6 Spillway Capacity cfs

Okay

Okay

Skimmer Basin 1

Okay

- 4.83 Disturbed Area (Acres)
- 5.38 Peak Flow from 10-year Storm (cfs)
- 8694 Required Volume ft³
- 1749 Required Surface Area ft²
- 29.6 Suggested Width ft
- 59.1 Suggested Length ft
 - 82 Trial Top Width at Spillway Invert ft
 - 52 Trial Top Length at Spillway Invert ft
 - 2 Trial Side Slope Ratio Z:1
- 2.5 Trial Depth ft (2 to 3.5 feet above grade)
- 72 Bottom Width ft
- 42 Bottom Length ft
- 3024 Bottom Area ft²
- 9068 Actual Volume ft³
- Okay
- 4264 Actual Surface Area ft²
- Okay
- 10 Trial Weir Length ft
- 0.5 Trial Depth of Flow ft
- 10.6 Spillway Capacity cfs

Okay

- 2 Skimmer Size (inches)
- 0.2 Head on Skimmer (feet)
- 1.5 Orifice Size (1/4 inch increments)
- 3.74 Dewatering Time (days) Suggest about 3 days

Skimmer Size	
(Inches)	
1.5)
2	
2.5)
3	,
4	
5)
6	,
8	

Temporary Sediment Basin 2

Okay

- 1.1 Disturbed Area (Acres)
- 5.38 Peak Flow from 10-year Storm (cfs)
- 1980 Required Volume ft³
- 2344 Required Surface Area ft²
- 34.2 Suggested Width ft
- 68.5 Suggested Length ft
 - 35 Trial Top Width at Spillway Invert ft
 - 68 Trial Top Length at Spillway Invert ft
 - 3 Trial Side Slope Ratio Z:1
 - 2 Trial Depth ft (2 to 13 feet above grade)
- 23 Bottom Width ft
- 56 Bottom Length ft
- 1288 Bottom Area ft²
- 3620 Actual Volume ft³
 - Okay
- 2380 Actual Surface Area ft²

Okay

Use Spillway Capacity Sheet to Size Primary and Emergency Spillways

- 2 Skimmer Size (inches)
- 0.05 Head on Skimmer (feet)
 - 1 Orifice Size (1/4 inch increments)
- 3.83 Dewatering Time (days)

Suggest about 3 days

