Stormwater Management \& Sediment/Erosion Control Report

Submitted to:
Town of Zebulon, NC \& Wake County, NC

Prepared for:
COOKOUT
1200 N Arendell Avenue
Zebulon, NC 27597

CSD Project No: OUT-1502

Prepared by:
COMMERCIAL SITE DESIGN, PLLC 8312 Creedmoor Road Raleigh, North Carolina 27613

Date: 10/24/2022
Rev. 7/21/2023
Rev. 11/6/2023

Table of Contents

Project Narrative 2
Adjacent Areas 2
Existing Conditions 2
Proposed Conditions 2
Critical Erosion Areas 3
Erosion and Sediment Control Measures 3
Silt Fence 3
Vegetative Stabilization 3
Temporary Stabilization 3
Construction Sequence 4
Temporary Erosion and Sediment Control Maintenance 5
Proposed Stormwater Management Requirements 5
Water Quantity Control Requirements and Compliance Methods 5
Water Quality Treatment Requirements 6
Downstream Impact Analysis 6
Calculation Methodology 6
Stormwater SCM Maintenance 7

List of Appendices:

Appendix A - Maps (USDA, FEMA, USGS, Pre- \& Post-Development Impervious)
Appendix B - Pre- \& Post-Development Hydrograph Calculation Report \& WQv Calculations
Appendix C - Vegetated Channel \& Rip Rap Apron Calculations
Appendix D -Jones Street Gutter Spread Calculations
Appendix E - Additional Forms (SCM Maintenance Agreement (DRAFT), Municipal Stormwater Tool) Appendix F - Downstream Impact Analysis Exhibit Figure

Project Narrative

This report addresses stormwater runoff quantity volume control, water quality treatment and peak flow reduction for site improvements of an existing site in Zebulon, NC. The property is located on N. Arendell Ave. +/-900LF northeast of US-64. The property coordinates are $35^{\circ} 50^{\prime} 12.336^{\prime \prime} \mathrm{N}$; $78^{\circ} 19^{\prime} 18.876^{\prime \prime} \mathrm{W}$. The existing property is an undeveloped open space area. The proposed development of this site includes the construction of a $4,625 \mathrm{SF}$ single-story fast-food restaurant with associated parking. The total site area is $83,368 \mathrm{SF}$ with 0 SF of existing impervious area. After proposed development the site consists of $48,983 \mathrm{SF}$ of impervious area.

Adjacent Areas

The site is bounded by commercial development. Limits of disturbance for this project remain on-site with the exception of utility connections.

Existing Conditions

The on-site runoff sheet flows from the center of the property and sheet flows off-site. Proposed development maintains existent drainage patterns.

Site Area $=83,368$ SF
Existing Open Space $=83,368$ SF
Existing Impervious $=0$ SF

The USDA Soils Survey mapping included in Appendix A shows that the soils on-site are primarily Ur - Urban Land and WeB - Wedowee sandy loam, 2 to 6 percent slopes, both belonging to Hydrologic Soil Group D.

Proposed Conditions

The proposed development consist of a single-story $4,625 \mathrm{SF}$ building with curb islands and associated parking. The development will result in $48,983 \mathrm{SF}$ of impervious surface area being added to the site. In the post-development condition, stormwater runoff enters a proposed stormwater conveyance system then flows into an underground detention system. A portion of the detained runoff is directed through a Contech StormFilter water quality device, prior to exiting the site. Runoff volumes in excess of the water quality volume are detained and released at or below pre-development flow rates via the use of a multistage outlet control structure. The outlet pipe from the outlet control structure daylights in the rear of property along Jones Street.

Site Area $=83,368$ SF
Proposed Open Space $=34,385$ SF
$\underline{\text { Proposed Impervious }=48,983 \text { SF }}$

Critical Erosion Areas

The most critical erosion area will be the surface of the working areas during construction operations. If grass is not established on dormant denuded areas then there is a significant potential for the covered areas to be eroded and for sediment to be carried in the runoff. To minimize the potential for erosion, covered areas that are temporarily inactive will be seeded within 14 working days after placement of the soil cover.

Erosion and Sediment Control Measures

All vegetative practices and erosion and sediment control features shall be designed, constructed, and maintained in accordance with the NCDEQ Erosion and Sediment Control and Wake County requirements. The erosion and sediment control plan shall be kept on site in a mailbox type structure located immediately adjacent to the posted permits if needed. Sediment shall be removed from the sediment control structures as necessary, but at a minimum of when the design capacity of each structure is reduced by 50%. Plan-view drawings with details and these same requirements are provided.

Silt Fence

Sediment fences will be provided down gradient of the proposed site grading at the locations shown on the drawings. Silt fences are not to be used across channels or in areas of concentrated flows.

Vegetative Stabilization

Vegetative cover shall be re-established within 14 calendar days after completion of the activity. Refer to plans for temporary and permanent seeding schedule and specifications.

Temporary Stabilization

Disturbed areas will be vegetated in accordance with NCDEQ Erosion and Sediment Control and Wake County requirements. Temporary control features will remain in place and will be maintained until the up-gradient disturbed area has been stabilized with vegetative cover.

Construction Sequence

The contractor is responsible for ensuring that erosion is minimized and that compliance with all applicable federal, state, and local laws, regulations, and ordinances are maintained throughout execution of this project.

Phase 1:

1. Obtain a land disturbing permit. Schedule a pre-construction meeting.
2. Install gravel construction pad, temporary diversions, silt fence, or other measures as shown on the approved plan. Clear only as necessary to install these devices. Seed temporary diversions and berms immediately after construction. See detail on seeding schedule. Contractor shall begin with sediment fencing and all other sediment containment devices followed by all diversion and by-pass ditches/berms and approved inlet protection devices.
3. Contact Karyn Pageu @ 919-786-8769 for a compliance inspection immediately following installation of the temporary sediment control devices and prior to mass grading of the site.

Phase 2:

1. Begin clearing/grubbing and general excavation on site. It is the responsibility of the contractor to phase/stage erosion control to allow for construction.

Note: Contractor shall inspect and repair all erosion devices at least once a week and after every rainfall. Grading activity shall be prohibited in the areas of the sediment control devices until the areas upstream of these devices have been stabilized and approved.
2. Begin installing upstream storm drainage system. Install approved inlet protection. Additional measures may be required by the inspector due to the routing of the storm drainage system and actual field conditions.

Note: the contractor shall ensure that the erosion control devices remain undisturbed during construction of the building pads and associated parking/drive areas adjacent to these devices until the contributing upstream areas have been stabilized and approved. Erosion control measures shall not be removed until approval from the environmental inspector.
3. Stabilize site as areas are brought up to finish grade with vegetation, paving, ditch linings, etc. Seed and mulch denuded areas within 14 working days or 30 calendar days after completion of any phase of construction, whichever period is stabilized. All areas shall be stabilized within 30 days.

Note: the contractor shall ensure that the erosion control devices remain undisturbed during construction of the building pads and associated parking/drive areas adjacent to these devices until the contributing upstream areas have been stabilized and approved.

Phase 3:

1. When construction is complete and all areas are stabilized completely, call for inspection by environmental inspector. When site is approved, remove silt fencing, inlet protection, etc. and seed or pave any resulting bare areas. All remaining permanent erosion control devices, such as outlet protection and permanent swale vegetation, should now be installed or brought online.
2. When vegetation has become established, call for a final site inspection by the environmental inspector. Obtain a certificate of completion.

Temporary Erosion and Sediment Control Maintenance

All erosion and sediment control measures will be checked for stability and operation following every runoff-producing rainfall but in no case less than twice every week, at least 72 hours apart. Any needed repairs will be made immediately to maintain all measures as designed.

Sediment fences and inlet protection shall be inspected at least twice every week, at least 72 hours apart. Repairs shall be made immediately. Sediment deposits shall be removed as needed to provide adequate storage volume for the next rainfall event, and to reduce pressure on the fence. Fencing materials and sediment deposits shall be removed, and the area brought to grade following stabilization of up gradient disturbed areas.

Proposed Stormwater Management Requirements

The stormwater management controls proposed provide water quantity volume control, peak flow reduction and water quality treatment. The Appendices of this report provide detailed information regarding the hydrology and water quality improvements for the pre- and post-development conditions for the site.

Water Quantity Control Requirements and Compliance Methods

This project is located within the City of Zebulon city limits and is subject to the City of Zebulon Code of Ordinances Chapter 151 - Stormwater. Per Chapter 151.35 , high-density projects shall control and treat runoff from the first inch of rainfall, and shall feature BMPs designed to ensure no net increase in peak flow rates leaving the site from the pre-development conditions for the one-year, 24-hour storm. Additionally, per Chapter 151.36 (A), a downstream impact analysis shall be performed to ensure the project will not cause any negative impacts on flooding or channel degradation downstream of the project site.

In order to address these water quantity control requirements, this project proposes to install an underground detention system with a multi-stage outlet control structure. Stormwater flows have been modeled for on-site and off-site pre- and post-development flow rates to ensure compliance with the above stated regulations. In the post-development conditions, the 1-year and 10-year 24-hour flow rates are controlled to below the pre-development conditions at each respective analysis point, as indicated on the Downstream Drainage Analysis Map within Appendix F. Please see Appendix B for supporting on and off-site water quantity calculations and further information.

Water Quality Treatment Requirements

The project is located within the Neuse River watershed basin and is subject to water quality treatment requirements listed in the City of Zebulon Code of Ordinances, Chapter 151.35 (D) consisting of treatment to remove 85% TSS from the first 1.0 " of rainfall on-site. Post-construction runoff will be treated with a primary SCM (Contech StormFilter) which will provide the TSS treatment requirements per the City of Zebulon Ordinances. The StormFilter will be designed and sized in accordance with NCDEQ minimum design criteria listed in the NCDEQ Stormwater Design Manual, chapter D-1. See Appendix C and D for details.

Downstream Impact Analysis

A downstream impact analysis was performed in accordance with section 151.36 of the Zebulon Code of Ordinances to ensure there are no impacts on flooding or channel degradation downstream as a result of this project. Topographic mapping of the site as well as the downstream drainage areas was reviewed during the preparation of this analysis. Two downstream drainage areas and analysis points were identified and modeled using Hydraflows Hydrographs and the NRCS SCS-Method. Pre-development and post-development hydrograph models were prepared and used to confirm there were no increases in the 10-year, 24-hour storm flow rates at the site boundaries nor at the downstream analysis points. Please see the summary of findings below, as well as the attached Hydraflows Hydrograph calculations (Appendix B) and Downstream Impact Analysis exhibit figure (Appendix F).

10-Year, 24-Hour Storm Peak Flow Summary Table:				
Analysis Point:	DA-1 (On-Site)	DA-1 (Downstream)	DA-2 (On-Site)	DA-2 (Downstream)
Pre-Development	3.48 CFS	15.88 CFS	4.82 CFS	32.71 CFS
Post-Development	1.12 CFS	14.35 CFS	2.56 CFS	32.71 CFS

Calculation Methodology

- The rainfall data was taken from NOAA Atlas 14 . This rainfall depth was then input into Hydraflow 2017 along with a CN using the SCS method for pre- and post-development flow rates. Please reference the Appendix B within this report for additional information.
- Soils data for the site was taken from the NRCS USDA web soil survey website (http://websoilsurvey.nrcs.usda.gov/). Please reference the miscellaneous site data section within this report for additional information.
- The on- and off-site topography used in the analysis is from a field survey by Commercial Site Design.

Stormwater SCM Maintenance

Frequent, thorough, and consistent inspections and maintenance are critical to the successful operation of the stormwater control measures. Inspections reveal the operational status of the system and identify needed maintenance actions. Therefore, the individuals responsible for inspecting and maintaining the SCM should thoroughly understand the stormwater control measures and processes. The type and frequency of maintenance for a specific stormwater system is determined by inspection results and the maintenance schedule for each stormwater device being proposed. Maintenance should be performed in accordance with system design information and safety procedures provided in Appendices. Performing timely maintenance is important in preventing system failure and will be less expensive in the long-term.

Construction Maintenance

During construction, the project site owner must implement a self-monitoring program that includes a written site evaluation of all erosion control measures and SCMs after each measurable storm event, and at least one time per week, in accordance with the requirements in the stormwater manual. All measures and controls must be repaired and maintained in proper operating condition.

Post-Construction Maintenance

After all construction activity has been completed, SCM maintenance is the responsibility of the property owner.

COOK OUT
1200 N. ARENDELL AVE.
ZEBULON, NC 27597
OUT-1502

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils	\square	D
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transportation	
B/D	H+	Rails
C	\sim	Interstate Highways
C/D	(2)	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Background	
\cdots A		Aerial Photography
\cdots A/D		
\cdots B		
\cdots B/D		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
- B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Wake County, North Carolina
Survey Area Data: Version 25, Oct 2, 2023
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 24, 2022-May 9, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ur	Urban land		1.9	76.5%
WeB	Wedowee sandy loam, 2 to 6 percent slopes	B	0.6	23.5%
Totals for Area of Interest	$\mathbf{2 . 5}$			

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified
Tie-break Rule: Higher

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
$\left.\begin{array}{l|l} & \\ \begin{array}{l|l}\text { SPECIAL FLOOD } \\ \text { HAZARD AREAS }\end{array} & \begin{array}{l}\text { Without Base Flood Elevation (BFE) } \\ \text { Zone A, } V \text {, A99 } \\ \text { With BFE or Depth Zone AE, AO, AH, VE, AR }\end{array} \\ \text { Regulatory Floodway }\end{array}\right]$
 of 1% annual chance flood with average THER AREAS STRUCTURES

B $-\frac{20.2}{17.5}$ Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation Coastal Transect mu 513 mm Base Flood Elevation Line (BFE) $工$ Limit of Study _Jurisdiction Boundary -- --- Coastal Transect Baseline
\qquad Profile Baseline
- Hydrographic Feature

OTHER FEATURES

MAP PANELS

\therefore Digital Data Available
 No Digital Data Available
 Unmapped

0
The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/17/2023 at 2:48 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images fo unmapped and unmodernized areas cannot be used for regulatory purposes.

${ }^{35.7500^{\circ}}{ }^{-78.3750} \cdot$

COOK OUT
1200 N. ARENDELL AVE
ZEBULON, NC 27597
OUT-1502

Watershed Model Schematic

Legend

Hyd.	Origin	Description
1	SCS Runoff	Pre-Development (DA-1)
2	SCS Runoff	Post-Development (DA-1)
3	SCS Runoff	Pre-Development (DA-2)
4	SCS Runoff	Post-Development (DA-2 Detained)
5	SCS Runoff	Post-Development (DA-2 BP1)
6	SCS Runoff	Post-Development (DA-2 BP2)
7	Reservoir	Underground Detention
8	Combine	Post-Development (DA-2)
10	SCS Runoff	Pre-Development Downstream DA-1
11	SCS Runoff	Post-Development Downstream DA-1
12	SCS Runoff	Pre-Development Downstream DA-2
13	SCS Runoff	Post-Development Downstream DA-2 (w/out Site)
14	Combine	Post-Development Downstream DA-2

Hydrograph Return Period Recap

Hydrograph Report

Hyd. No. 1

Pre-Development (DA-1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.300 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.03 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=3,410 \mathrm{cuft}$
Drainage area	$=0.800 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=13.20 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^0]
TR55 Tc Worksheet

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Development (DA-1)

Description	A		B		C		Totals
Sheet Flow							
Manning's n-value	$=0.240$		0.011		0.011		
Flow length (ft)	$=100.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.46$		0.00		0.00		
Land slope (\%)	$=3.00$		0.00		0.00		
Travel Time (min)	$=11.67$	+	0.00	+	0.00	=	11.67
Shallow Concentrated Flow							
Flow length (ft)	$=160.00$		0.00		0.00		
Watercourse slope (\%)	$=1.20$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	=1.77		0.00		0.00		
Travel Time (min)	$=1.51$	+	0.00	+	0.00	=	1.51
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	$=$	0.00
Total Travel Time, Tc ... 13.20 min							

Hydrograph Report

Hyd. No. 2

Post-Development (DA-1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.558 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,969 \mathrm{cuft}$
Drainage area	$=0.170$ ac	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.85$ in	Distribution	$=$ Type II
Storm duration	$=24$ hrs	Shape factor	$=484$

[^1]
Hydrograph Report

Hyd. No. 3

Pre-Development (DA-2)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.803 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.03 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=4,731 \mathrm{cuft}$
Drainage area	$=1.110 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=12.40 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=+(1.110 \times 80)] / 1.110$

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Development (DA-2)

Description	A		B		C		Totals
Sheet Flow							
Manning's n-value	$=0.240$		0.011		0.011		
Flow length (ft)	$=100.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.46$		0.00		0.00		
Land slope (\%)	$=3.50$		0.00		0.00		
Travel Time (min)	$=10.97$	+	0.00	+	0.00	=	10.97
Shallow Concentrated Flow							
Flow length (ft)	$=215.00$		0.00		0.00		
Watercourse slope (\%)	$=2.36$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	=2.48		0.00		0.00		
Travel Time (min)	$=1.45$	+	0.00	+	0.00	$=$	1.45
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value Velocity (ft/s)	$=0.015$		0.015		0.015		
	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc ...							12.40

Hydrograph Report

Hyd. No. 4

Post-Development (DA-2 Detained)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=4.393 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=9,562 \mathrm{cuft}$
Drainage area	$=1.220 \mathrm{ac}$	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(1.000 \times 98)+(0.220 \times 80)] / 1.220$

Post-Development (DA-2 Detained)

Q (cfs)
H.00

Hydrograph Report

Hyd. No. 5

Post-Development (DA-2 BP1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.594 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.13 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=2,104 \mathrm{cuft}$
Drainage area	$=0.500 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=23.00 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=+(0.500 \times 80)] / 0.500$

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022
Hyd. No. 5
Post-Development (DA-2 BP1)

Description	A		B		\underline{C}		Totals
Sheet Flow							
Manning's n-value	$=0.240$		0.011		0.011		
Flow length (ft)	$=208.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.46$		0.00		0.00		
Land slope (\%)	$=2.60$		0.00		0.00		
Travel Time (min)	$=22.20$	+	0.00	+	0.00	=	22.20
Shallow Concentrated Flow							
Flow length (ft)	$=105.00$		0.00		0.00		
Watercourse slope (\%)	$=2.00$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	=2.28		0.00		0.00		
Travel Time (min)	$=0.77$	+	0.00	+	0.00	=	0.77
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	$=$	0.00
Total Travel Time, Tc .. 23.00 min							

Hydrograph Report

Hyd. No. 6

Post-Development (DA-2 BP2)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.077 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hr}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=178 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=98^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.85$	$=$ in	Distribution
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(0.020 \times 98)] / 0.020$

Hydrograph Report

Hyd. No. 7
Underground Detention

Hydrograph type	$=$ Reservoir	Peak discharge	$=0.433 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.33 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=9,558 \mathrm{cuft}$
Inflow hyd. No.	$=4-$ Post-Development (DA-2 DAtain\&fdevation	$=331.87 \mathrm{ft}$	
Reservoir name	$=$ UG Detention System	Max. Storage	$=5,095 \mathrm{cuft}$

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022
Thursday, 11 / 2 / 2023

Pond No. 1 - UG Detention System

Pond Data

UG Chambers -Invert elev. $=330.00 \mathrm{ft}$, Rise \times Span $=4.00 \times 4.00 \mathrm{ft}$, Barrel Len $=123.00 \mathrm{ft}$, No. Barrels $=8$, Slope $=0.25 \%$, Headers $=$ No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	330.00	n / a	0	0
0.43	330.43	n / a	389	389
0.86	330.86	n / a	1,096	1,485
1.29	331.29	n / a	1,420	2,905
1.72	331.72	n / a	1,600	4,505
2.15	332.15	n / a	1,680	6,185
2.58	332.58	n / a	1,680	7,866
3.02	333.02	n / a	1,600	9,466
3.45	333.45	n / a	1,419	10,885
3.88	333.88	n / a	1,095	11,980
4.31	334.31	n / a	387	12,368

Culvert / Orifice Structures

		[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]
[D]									

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage (ft)

Hydrograph Report

Hyd. No. 8

Post-Development (DA-2)

Hydrograph type	$=$ Combine	Peak discharge	$=1.029 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=12.13 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=11,840 \mathrm{cuft}$
Inflow hyds.	$=5,6,7$	Contrib. drain. area	$=0.520 \mathrm{ac}$

Hydrograph Report

Hyd. No. 10
Pre-Development Downstream DA-1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=6.955 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=33,756 \mathrm{cuft}$
Drainage area	$=5.780 \mathrm{ac}$	Curve number	$=87^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. $($ Tc)	$=40.10 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

${ }^{*}$ Composite $($ Area $/ C N)=[(2.180 \times 98)+(3.600 \times 80)] / 5.780$

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-Development Downstream DA-1

Description	A		B		\underline{C}		Totals
Sheet Flow							
Manning's n-value	$=0.400$		0.011		0.011		
Flow length (ft)	$=200.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.46$		0.00		0.00		
Land slope (\%)	$=1.75$		0.00		0.00		
Travel Time (min)	$=37.93$	+	0.00	+	0.00	=	37.93
Shallow Concentrated Flow							
Flow length (ft)	$=380.00$		0.00		0.00		
Watercourse slope (\%)	$=3.42$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	=2.98		0.00		0.00		
Travel Time (min)	$=2.12$	+	0.00	+	0.00	=	2.12
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	$=$	0.00
Total Travel Time, Tc		40.10

Hydrograph Report

Hyd. No. 11

Post-Development Downstream DA-1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=6.438 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=31,203 \mathrm{cuft}$
Drainage area	$=5.100 \mathrm{ac}$	Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. $($ Tc)	$=40.10 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(2.320 \times 98)+(2.780 \times 80)] / 5.100$

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Post-Development Downstream DA-1

Description	A		B		\underline{C}		Totals
Sheet Flow							
Manning's n-value	$=0.400$		0.011		0.011		
Flow length (ft)	$=200.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.46$		0.00		0.00		
Land slope (\%)	$=1.75$		0.00		0.00		
Travel Time (min)	$=37.93$	+	0.00	+	0.00	=	37.93
Shallow Concentrated Flow							
Flow length (ft)	$=380.00$		0.00		0.00		
Watercourse slope (\%)	$=3.42$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	=2.98		0.00		0.00		
Travel Time (min)	$=2.12$	+	0.00	+	0.00	=	2.12
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	$=$	0.00
Total Travel Time, Tc .. 40.10 min							

Hydrograph Report

Hyd. No. 12

Pre-Development Downstream DA-2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=13.97 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.40 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=79,332 \mathrm{cuft}$
Drainage area	$=14.240 \mathrm{ac}$	Curve number	$=86^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=49.10 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^2]

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022
Hyd. No. 12
Pre-Development Downstream DA-2

Description	A		B		C		Totals
Sheet Flow							
Manning's n-value	$=0.400$		0.011		0.011		
Flow length (ft)	$=300.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.46$		0.00		0.00		
Land slope (\%)	$=3.50$		0.00		0.00		
Travel Time (min)	$=39.76$	+	0.00	+	0.00	=	39.76
Shallow Concentrated Flow							
Flow length (ft)	$=785.00$		0.00		0.00		
Watercourse slope (\%)	$=0.76$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	$=1.41$		0.00		0.00		
Travel Time (min)	$=9.30$	+	0.00	+	0.00	=	9.30
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$						
			0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	=	0.00

Total Travel Time, Tc
49.10 min

Hydrograph Report

Hyd. No. 13

Post-Development Downstream DA-2 (w/out Site)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=13.56 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.40 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=76,855 \mathrm{cuft}$
Drainage area	$=13.160 \mathrm{ac}$	Curve number	$=87^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=49.06 \mathrm{~min}$
Total precip.	$=2.85 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^3]

Hyd. No. 13
Post-Development Downstream DA-2 (w/out Site)

Description	A		B		C		Totals
Sheet Flow							
Manning's n-value	$=0.400$		0.011		0.011		
Flow length (ft)	$=300.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.46$		0.00		0.00		
Land slope (\%)	$=3.50$		0.00		0.00		
Travel Time (min)	$=39.76$	+	0.00	+	0.00	=	39.76
Shallow Concentrated Flow							
Flow length (ft)	$=785.00$		0.00		0.00		
Watercourse slope (\%)	$=0.76$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft / s)	=1.41		0.00		0.00		
Travel Time (min)	$=9.30$	+	0.00	+	0.00	=	9.30
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc		49.06 m

Hydrograph Report

Hyd. No. 14

Post-Development Downstream DA-2

Hydrograph type	$=$ Combine	Peak discharge	$=14.29 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.37 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=88,695 \mathrm{cuft}$
Inflow hyds.	$=8,13$	Contrib. drain. area	$=13.160 \mathrm{ac}$

Post-Development Downstream DA-2

Hydrograph Report

Hyd. No. 1

Pre-Development (DA-1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=3.476 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.00 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=9,030 \mathrm{cuft}$
Drainage area	$=0.800 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=13.20 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^4]

Hydrograph Report

Hyd. No. 2

Post-Development (DA-1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.115 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=2,445 \mathrm{cuft}$
Drainage area	$=0.170 \mathrm{ac}$	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.14$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^5]
Hydrograph Report

Hyd. No. 3

Pre-Development (DA-2)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=4.823 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.00 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=12,529 \mathrm{cuft}$
Drainage area	$=1.110 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=12.40 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=+(1.110 \times 80)] / 1.110$

Hydrograph Report

Hyd. No. 4

Post-Development (DA-2 Detained)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=8.324 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=18,925 \mathrm{cuft}$
Drainage area	$=1.220 \mathrm{ac}$	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

${ }^{*}$ Composite $($ Area/CN $)=[(1.000 \times 98)+(0.220 \times 80)] / 1.220$

Hydrograph Report

Hyd. No. 5

Post-Development (DA-2 BP1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.614 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.10 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=5,571 \mathrm{cuft}$
Drainage area	$=0.500 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=23.00 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^6]

Hydrograph Report

Hyd. No. 6

Post-Development (DA-2 BP2)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.140 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=11.93 \mathrm{hr}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=334 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=98^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Din	Shape
Storm duration	$=24 \mathrm{hrs}$		

[^7]
Hydrograph Report

Hyd. No. 7

Underground Detention

Hydrograph type	$=$ Reservoir	Peak discharge	$=0.932 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.23 \mathrm{hrs}$
Time interval	$=2$ min	Hyd. volume	$=18,921 \mathrm{cuft}$
Inflow hyd. No.	$=4-$ Post-Development (DA-2 D\&tainedevation	$=333.22 \mathrm{ft}$	
Reservoir name	$=$ UG Detention System	Max. Storage	$=10,157 \mathrm{cuft}$

Storage Indication method used.

Hydrograph Report

Hyd. No. 8

Post-Development (DA-2)

Hydrograph type	$=$ Combine	Peak discharge	$=2.563 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.10 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=24,825 \mathrm{cuft}$
Inflow hyds.	$=5,6,7$	Contrib. drain. area	$=0.520 \mathrm{ac}$

hyds.

Post-Development (DA-2)

Hydrograph Report

Hyd. No. 10

Pre-Development Downstream DA-1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=15.88 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2$ min	Hyd. volume	$=77,617 \mathrm{cuft}$
Drainage area	$=5.780$ ac	Curve number	$=87^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=40.10 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^8]
Hydrograph Report

Hyd. No. 11

Post-Development Downstream DA-1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=14.35 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=70,388 \mathrm{cuft}$
Drainage area	$=5.100 \mathrm{ac}$	Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=40.10 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^9]

Hydrograph Report

Hyd. No. 12

Pre-Development Downstream DA-2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=32.71 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.37 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=185,978 \mathrm{cuft}$
Drainage area	$=14.240 \mathrm{ac}$	Curve number	$=86^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=49.10 \mathrm{~min}$
Total precip.	$=5.14$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^10]

Hydrograph Report

Hyd. No. 13

Post-Development Downstream DA-2 (w/out Site)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=31.00 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.37 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=176,720 \mathrm{cuft}$
Drainage area	$=13.160 \mathrm{ac}$	Curve number	$=87^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=49.06 \mathrm{~min}$
Total precip.	$=5.14 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^11]

Hydrograph Report

Hyd. No. 14

Post-Development Downstream DA-2

Hydrograph type	$=$ Combine	Peak discharge	$=32.71 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.37 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=201,545 \mathrm{cuft}$
Inflow hyds.	$=8,13$	Contrib. drain. area	$=13.160 \mathrm{ac}$

Hydrograph Report

Hyd. No. 1

Pre-Development (DA-1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=6.368 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time to peak	$=12.00 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=16,845 \mathrm{cuft}$
Drainage area	$=0.800 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. $($ Tc $)$	$=13.20 \mathrm{~min}$
Total precip.	$=8.00 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=+(0.800 \times 80)] / 0.800$

Hydrograph Report

Hyd. No. 2

Post-Development (DA-1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.800 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=4,075 \mathrm{cuft}$
Drainage area	$=0.170 \mathrm{ac}$	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=8.00 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^12]Post-Development (DA-1)

Hyd No. 2

Hydrograph Report

Hyd. No. 3

Pre-Development (DA-2)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=8.836 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.00 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=23,373 \mathrm{cuft}$
Drainage area	$=1.110 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=12.40 \mathrm{~min}$
Total precip.	$=8.00 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=+(1.110 \times 80)] / 1.110$

Pre-Development (DA-2)
Hyd. No. 3 -- 100 Year

Hyd No. 3

Hydrograph Report

Hyd. No. 4

Post-Development (DA-2 Detained)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=13.16 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=30,729 \mathrm{cuft}$
Drainage area	$=1.220$ ac	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=8.00$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

${ }^{*}$ Composite $($ Area/CN $)=[(1.000 \times 98)+(0.220 \times 80)] / 1.220$

Hydrograph Report

Hyd. No. 5

Post-Development (DA-2 BP1)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=2.978 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.10 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=10,392 \mathrm{cuft}$
Drainage area	$=0.500 \mathrm{ac}$	Curve number	$=80^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=23.00 \mathrm{~min}$
Total precip.	$=8.00 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=+(0.500 \times 80)] / 0.500$

Post-Development (DA-2 BP1)

Hydrograph Report

Hyd. No. 6

Post-Development (DA-2 BP2)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.218 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time to peak	$=11.93 \mathrm{hr}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=528 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=98^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=8.00$	$=$ in	Distribution II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite (Area/CN) $=[(0.020 \times 98)] / 0.020$

Hydrograph Report

Hyd. No. 7

Underground Detention

Hydrograph type	$=$ Reservoir	Peak discharge	$=12.95 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.97 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=30,725 \mathrm{cuft}$
Inflow hyd. No.	$=4-$ Post-Development (DA-2 Detainedqvation	$=334.20 \mathrm{ft}$	
Reservoir name	$=$ UG Detention System	Max. Storage	$=12,269 \mathrm{cuft}$

Storage Indication method used.

Hydrograph Report

Hyd. No. 8

Post-Development (DA-2)

Hydrograph type	$=$ Combine	Peak discharge	$=15.34 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.97 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=41,645 \mathrm{cuft}$
Inflow hyds.	$=5,6,7$	Contrib. drain. area	$=0.520 \mathrm{ac}$

Hydrograph Report

Hyd. No. 10
Pre-Development Downstream DA-1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=27.13 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=135,324 \mathrm{cuft}$
Drainage area	$=5.780$ ac	Curve number	$=87^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=40.10 \mathrm{~min}$
Total precip.	$=8.00$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(2.180 \times 98)+(3.600 \times 80)] / 5.780$

Q (cfs) Pre-Development Downstream DA-1
Hyd. No. 10 -- 100 Year
28.00

Hydrograph Report

Hyd. No. 11

Post-Development Downstream DA-1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=24.26 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=121,597 \mathrm{cuft}$
Drainage area	$=5.100 \mathrm{ac}$	Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=40.10 \mathrm{~min}$
Total precip.	$=8.00 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^13]

Hydrograph Report

Hyd. No. 12

Pre-Development Downstream DA-2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=56.56 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.37 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=327,277 \mathrm{cuft}$
Drainage area	$=14.240 \mathrm{ac}$	Curve number	$=86^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=49.10 \mathrm{~min}$
Total precip.	$=8.00$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^14]

Hydrograph Report

Hyd. No. 13

Post-Development Downstream DA-2 (w/out Site)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=53.02 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.37 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=308,108 \mathrm{cuft}$
Drainage area	$=13.160 \mathrm{ac}$	Curve number	$=87^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=49.06 \mathrm{~min}$
Total precip.	$=8.00 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^15]

Hydrograph Report

Hyd. No. 14

Post-Development Downstream DA-2

Hydrograph type	$=$ Combine	Peak discharge	$=55.83 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.37 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=349,753 \mathrm{cuft}$
Inflow hyds.	$=8,13$	Contrib. drain. area	$=13.160 \mathrm{ac}$

hyds
$=$ Combine
$=100 \mathrm{yrs}$
$=8,13$

Peak discharge $\quad=55.83 \mathrm{cfs}$
Time to peak $=12.37 \mathrm{hrs}$
Hyd. volume $=349,753$ cuft
Contrib. drain. area $=13.160$ ac

Hydraflow Rainfall Report

Return Period (Yrs)	Intensity-Duration-Frequency Equation Coefficients (FHA)			
	B	D	E	(N/A)
1	65.1130	13.0000	0.8983	------
2	71.2172	12.9000	0.8806	---
3	0.0000	0.0000	0.0000	---
5	68.0041	12.5000	0.8280	-----
10	71.4662	12.4000	0.8035	--------
25	63.2015	11.1000	0.7421	---
50	56.4878	9.9000	0.6912	------
100	54.2579	9.3000	0.6606	-----

File name: OUT-1502 IDF.IDF

Intensity = B / (Tc + D)^E

Return Period (Yrs)	Intensity Values (in/hr)											
	5 min	10	15	20	25	30	35	40	45	50	55	60
1	4.85	3.89	3.26	2.82	2.48	2.22	2.01	1.84	1.70	1.58	1.47	1.38
2	5.61	4.52	3.80	3.28	2.90	2.60	2.36	2.16	2.00	1.86	1.74	1.63
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.36	5.16	4.37	3.81	3.38	3.05	2.78	2.56	2.37	2.22	2.08	1.96
10	7.20	5.88	5.00	4.37	3.89	3.52	3.22	2.97	2.76	2.58	2.43	2.29
25	8.04	6.58	5.62	4.93	4.42	4.01	3.68	3.41	3.18	2.99	2.82	2.67
50	8.73	7.15	6.12	5.40	4.85	4.42	4.07	3.79	3.55	3.34	3.16	3.00
100	9.36	7.68	6.59	5.83	5.25	4.80	4.43	4.13	3.88	3.66	3.47	3.30

Tc = time in minutes. Values may exceed 60.
: X:IOUT - Cookout\1500 Sites\1502-Zebulon, NC\Engineering\Stormwater\Stormwater ModellOUT-1502 Evt Mgr.pcp

Storm Distribution	Rainfall Precipitation Table (in)							
	1-yr	2-yr	$\mathbf{3 - y r}$	$\mathbf{5 - y r}$	$\mathbf{1 0 - y r}$	$\mathbf{2 5 - y r}$	$\mathbf{5 0}-\mathbf{y r}$	$\mathbf{1 0 0}-\mathbf{y r}$
SCS 24-hour	2.85	3.46	0.00	4.38	5.14	6.20	7.07	8.00
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

WATER QUALITY VOLUME

WQv $=3630$ * Rd * Rv * A		
where,		
WQv = Water quality volume (acre-feet)		
$\mathrm{Rv}=0.05+0.009 \times \mathrm{l}$		
$\mathrm{I}=$ Percent impervious		
A = Area (acres)		
$\mathrm{P}=$ Rainfall (inches)		
Total area to UG Detention, A =	1.22	acres
Impervious area to UG Detention =	1.00	acres
Percent impervious, I =	81.97	\%
Runoff coefficient, Rv =	0.79	
Rainfall for WQ storm, Rd=	1.00	inches
Water quality volume, WQv =	3488	cf
75\% WQv =	2616	cf

WATER QUALITY VOLUME DRAWDOWN

```
        T = WQv / Q / 86400 (sec/day)
        where,
        T = Drawdown Time (days)
        WQv = Water Quality Volume (cf)
        Q = Cd * A * (2gh)^(1/2)
    Diameter of orifice, D = 1.33 inches
    Cross sectional area of orifice, A = 0.002 sf
        Orifice invert elevation = 328.70 ft
            WQv elevation = 331.08 ft
            Orifice coefficient = 0.61
Driving head on orifice @WQv, h = 2.38
            Orifice flowrate, Q = 0.0061
            Drawdown time, T = 4.99 days
                119.70 hours
```


C光NTECH
 ENGINEERED SOLUTIONS

Design Engineer:

Date
Site Information
Project Name
Project State
Project Location
Drainage Area, Ad
Impervious Area, Ai
Pervious Area, Ap
\% Impervious
Runoff Coefficient, Rv
Water Quality Volume Calculations
Design storm rainfall depth, Rd
Water quality volume, WQV
Storage Component Calculations
Capture 75\% of WQV
Pretreatment credit (estimated or calculated), \%pre
Mass loading calculations
Mean Annual Rainfall, P
Agency required \% removal
Percent Runoff Capture (\% capture)
Mean Annual Runoff, V_{t}
Event Mean Concentration of Pollutant, EMC
Annual Mass Load, $\mathrm{M}_{\text {total }}$

Determining Number of Cartridges for Volume-Based Design in NC

Filter System
Filtration brand
Cartridge height

Cartridge Quantity Calculation

Mass removed by pretreatment system, $\mathrm{M}_{\text {pre }}$
Mass load to filters after pretreatment, $\mathrm{M}_{\text {pass1 }}$
Estimate the required filter efficiency, $\mathrm{E}_{\text {filter }}$
Mass to be captured by filters, $M_{\text {fitter }}$
Maximum Cartridge Flow rate, $\mathrm{Q}_{\text {cart }}$
Mass load per cartridge, $\mathrm{M}_{\text {cart }}$ (lbs)
Number of Cartridges required, $\mathrm{N}_{\text {mass }}$
Maximum Treatment Capacity
SUMMARY

Maximum Treatment Flow Rate, cfs	0.17
Cartridge Flow Rate, gpm	7.5
Number of Cartridges	10
Stormfilter Size	$96 " \mathrm{MH}$

Number of Cartridges 10
Stormfilter Size

StormFilter
18 in

186 lbs =Mtotal * \%removal
435 lbs =Mtotal - Mpre
79\% =1+(\%removal - 1)/(1-\%pre)
$342 \mathrm{lbs}=\mathrm{Mpass} 1^{*}$ Efilter
$7.5 \mathrm{gpm}=\mathrm{q}^{*}$ ($7.5 \mathrm{ft} 2 /$ cartridge)
$36 \mathrm{lbs}=$ lookup mass load per cartridge
10 =ROUNDUP(Mfilter/Mcart,0)
$0.17=$ =Nmass*(Qcart/449)

Target Pollutant(s):	TSS, N\&P
Media:	Phosphosorb

Weir Report

Flume \#1

Rectangular Weir	
Crest	$=$ Sharp
Bottom Length (ft)	$=3.00$
Total Depth (ft)	$=0.50$
Calculations	$=3.33$
Weir Coeff. Cw	Known Q
Compute by:	$=1.51$

Flume \#1
Depth (ft)

DESIGN OF RIPRAP OUTLET PROTECTION

New York DOT Dissipator Method For Use in Defined Chann

(Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.)

Guide to Color Key:
 User Input Data
 Calculated Value

Designed By:	JAS	Date: Checked By: Date:
Project Name: Project No.: Sambatek Cookout Zebulon		

Site Location (City/Town)

Zebulon
Culvert Id.
Flume \#1

Estimation of Stone Size and Dimensions For Culvert Aprons

Step 1) Compute flow velocity V_{0} at culvert or paved channel outlet.
Step 2) For pipe culverts D_{0} is diameter.
For pipe arch, arch and box culverts, and paved channel outlets, $D_{0}=A_{0}$ where A. cross-sectional area of flow at outlet.

For multiple culverts, use $D_{0}=1.25 \times D_{0}$ of single culvert.
Velocity (ft/s) 1.77

Opening type
Single or multiple openings?
Outlet pipe diameter, $\mathrm{D}_{\mathrm{o}}(\mathrm{ft})$
1.77
Paved Channel Outlet
Single
0.85

NOTE 1: If opening type is anything other than "Pipe Culvert", $\mathrm{D}_{0}=\mathrm{A}_{0}$ (Cross-sectional area of flow at outlet).
NOTE 2: If multiple openings, $D_{0}=1.25 \times D_{0}$ of single culvert.

Step 3) For apron grades of 10% or steeper, use recommendations For next higher zone. (Zones 1 through 6).

Zone

Will apron have >/=10\% grade?
NOTE: For apron slopes equal to or greater than 10\%, use next higher Zone in Figure 8.06d to determine apron length.
Apron length (ft)

Determination of Stone Sizes For Dumped Stone Channel Linings and Revetments

Step 1. Use figure 8.06 e to determine maximum stone size (e.g. for 12 $\mathrm{Fps}=20^{\prime \prime}$ or 550 lbs .

Max. stone size (in.)
5
Figure 8.06e

Step 2. Use figure 8.06 f to determine acceptable size range for stone (for 12 FPS it is $125-500 \mathrm{lbs}$. for 75% of stone, and the maximum and minimum range in weight should be $25-500 \mathrm{lbs}$.).

NOTE: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness:

	Diameter (inches)	Manning's "n""	Min. thickness of lining	
(inches)				
Fine	3	0.031	9	12
Light	6	0.035	12	18
Medium	13	0.040	18	24
Heavy	23	0.044	30	36
			(Channels)	(Dissapators)

Min. \& max range of stones (lbs) 5igure 8.05f
Weight range of 75% of stones (lbs)
5-25 Figure $8.05 f$

Weir Report

Flume \#2

Rectangular Weir	
Crest	$=$ Sharp
Bottom Length (ft)	$=3.00$
Total Depth (ft)	$=0.50$
Calculations	$=3.33$
Weir Coeff. Cw	Known Q
Compute by:	$=0.34$

Flume \#2
Depth (ft)

DESIGN OF RIPRAP OUTLET PROTECTION

New York DOT Dissipator Method For Use in Defined Chann

(Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.)

Guide to Color Key:
 User Input Data
 Calculated Value

Designed By:	JAS	Date: Checked By: Date:
Project Name: Project No.: Sambatek Cookout Zebulon		

Site Location (City/Town)

Zebulon
Culvert Id.
Flume \#1

Estimation of Stone Size and Dimensions For Culvert Aprons

Step 1) Compute flow velocity V_{0} at culvert or paved channel outlet.
Step 2) For pipe culverts D_{0} is diameter.
For pipe arch, arch and box culverts, and paved channel outlets, $D_{0}=A_{0}$ where A. cross-sectional area of flow at outlet.

For multiple culverts, use $D_{0}=1.25 \times D_{0}$ of single culvert.
Velocity (ft/s) 1.08

Opening type
Single or multiple openings?
Outlet pipe diameter, $\mathrm{D}_{\mathrm{o}}(\mathrm{ft})$
1.08
Paved Channel Outlet
Single
0.31

NOTE 1: If opening type is anything other than "Pipe Culvert", $\mathrm{D}_{0}=\mathrm{A}_{0}$ (Cross-sectional area of flow at outlet).
NOTE 2: If multiple openings, $D_{0}=1.25 \times D_{0}$ of single culvert.

Step 3) For apron grades of 10% or steeper, use recommendations For next higher zone. (Zones 1 through 6).

Zone

Will apron have >/=10\% grade?
NOTE: For apron slopes equal to or greater than 10\%, use next higher Zone in Figure 8.06d to determine apron length.
Apron length (ft)

Determination of Stone Sizes For Dumped Stone Channel Linings and Revetments

Step 1. Use figure 8.06 e to determine maximum stone size (e.g. for 12 $\mathrm{Fps}=20^{\prime \prime}$ or 550 lbs .

Max. stone size (in.)
5
Figure 8.06e

Step 2. Use figure 8.06 f to determine acceptable size range for stone (for 12 FPS it is $125-500 \mathrm{lbs}$. for 75% of stone, and the maximum and minimum range in weight should be $25-500 \mathrm{lbs}$.).

NOTE: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness:

	Diameter (inches)	Manning's "n""	Min. thickness of lining	
(inches)				
Fine	3	0.031	9	12
Light	6	0.035	12	18
Medium	13	0.040	18	24
Heavy	23	0.044	30	36
			(Channels)	(Dissapators)

Min. \& max range of stones (lbs) 5igure 8.05f
Weight range of 75% of stones (lbs)
5-25 Figure $8.05 f$

COOK OUT
1200 N. ARENDELL AVE
ZEBULON, NC 27597
OUT-1502

OUT-1502 Storm Sewer Model

Storm Sewer Inventory Report

Structure Report

Storm Sewer Summary Report

NOTES: Return period = 10 Yrs. ; j - Line contains hyd. jump.

Inlet Report

NOTES: Inlet N -Values $=0.016$; Intensity $=4.00 /$ (Inlet time +0.00$)^{\wedge} 0.00 ;$ Return period $=10 \mathrm{Yrs}$; * Indicates Known Q added. All curb inlets are Inclined throat.

Storm Sewer Inlet Time Tabulation

Hydraulic Grade Line Computations

Notes: * Normal depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c=cir e=ellip b=box

Inlet Section (Line 2-Combination Inlet) - CB-1

Inlet Section (Line 1 - Combination Inlet) - CB-2
All dirnensions in feet

Inlet Section (Line 3 - Combination Inlet) - CB-3

Inlet Section (Line 5-Combination Inlet) - CB-4
All dimensions in feet

Inlet Section (Line 6-Combination Inlet) - CB-5
All dirnensions in feet

STATE OF NORTH CAROLINA WAKE COUNTY

STORMWATER AGREEMENT

THIS AGREEMENT, made and entered into this the \qquad day of \qquad by and between Wake County, hereinafter referred to as County, and \qquad , hereinafter referred to as Owner;

WITNESSETH
THAT WHEREAS, Owner is this day accepting responsibility for the stormwater device(s) installed on that certain real property known as \qquad ,
Permit Number \qquad as shown on the plat thereof recorded in the Book of Maps \qquad , Page \qquad , Wake County Registry; and

WHEREAS, as a part of the construction of the residence/development the Wake County Environmental Services - Watershed Management Section required that a stormwater device(s) be constructed; and

WHEREAS, the Owner accepts responsibility for the maintenance of the stormwater device(s) as prescribed in the Maintenance Agreement signed and notarized, dated \qquad 20 \qquad ; and

WHEREAS, the Owner grants access to Wake County to inspect the stormwater device(s); and
WHEREAS, the Owner understands that this Agreement shall endure to the benefit of his successors in title, whomsoever they may be in the future.

NOW, THEREFORE, it is understood and agreed by and between the parties:

1. The maintenance of the stormwater device(s) shall be the sole responsibility of the Owner.
2. The responsibility for the maintenance of the stormwater device shall pass in the chain of title to the Owner's successor in interest.
3. Access is granted to Wake County to inspect the stormwater device(s).
4. Annually, the Owner shall provide an inspection report by June 30th.

The report should be uploaded to the Permit Portal at Wakegov.com. You will need to Register in the Permit Portal and contact Watershed Management at watershedmanagement@wakegov.com to request access to your permit case files. (Subject Line: Add Case Contact)

Owner: \qquad
Date: \qquad

I, \qquad THE UNDERSIGNED notary Public of the County and
State aforesaid, certify that \qquad personally appeared before me this day and acknowledged the due execution of the foregoing instrument.

WITNESS my hand and notarial seal, this the \qquad day of \qquad
\qquad -.

Notary Public
My Comm. Exp. \qquad After recording return to:
Watershed Management Section 336 Fayetteville St. PO Box 550 Raleigh, NC 27602

DRAINAGE AREA 1

STORMWATER PRE-POST CALCULATIONS

LAND USE \& SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT			
Drainage Area (Acres)=	1.91				1.91			
Site Acreage within Drainage=	1.91				1.91			
One-year, 24-hour rainfall (in)=	2.85							
Two-year, 24-hour rainfall (in)=	3.46							
Ten-year, 24-hour storm (in)=	5.14							
Total Lake/Pond Area (Acres)=	0.00				0.00			
Lake/Pond Area not in the Tc flow path (Acres)=	0.00				0.00			
Site Land Use (acres):	A	B	C	D	A	B	C	D
Pasture								
Woods, Poor Condition								
Woods, Fair Condition								
Woods, Good Condition								
Open Space, Poor Condition								
Open Space, Fair condition								
Open Space, Good Condition				1.91				0.78
Reforestation (in dedicated OS)								
Connected Impervious								1.13
Disconnected Impervious								
SITE FLOW	PRE-DEVELOPMENT T_{c}				POST-DEVELOPMENT Tc			
Sheet Flow								
Length (ft)=	100.00				208.00			
Slope (ft/ft)=	0.030				0.026			
Surface Cover:	Grass				Grass			
n-value=	0.240				0.240			
T_{t} (hrs) $=$	0.214				0.408			
Shallow Flow								
Length (ft)=	160.00				105.00			
Slope (ft/ft)=	0.012				0.020			
Surface Cover:	Unpaved				Unpaved			
Average Velocity (ft/sec)=	1.77				2.28			
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.03				0.01			
Channel Flow 1								
Length (ft)=								
$\text { Slope }(\mathrm{ft} / \mathrm{ft})=$								
Cross Sectional Flow Area (ft^{2}) $=$								
Wetted Perimeter (ft) $=$								
Channel Lining:								
n -value=								
Hydraulic Radius (ft)=								
Average Velocity (ft/sec)=								
T T_{t} (hrs)=								

DRAINAGE AREA 1

STORMWATER PRE-POST CALCULATIONS

COUNTY

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft^{2}) $=$		
Wetted Perimeter (ft)=		
Channel Lining:		
n -value=		
Hydraulic Radius (ft)=		
Average Velocity ($\mathrm{ft/sec}$)=		
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft^{2}) $=$		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$		
Tc (hrs)=	0.24	0.10
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	80	91
Disconnected Impervious Adjustment		
Disconnected impervious area (acre) =		
CN ${ }_{\text {adjusted (1-year) }}=$	91	
High Density Only		
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT $=\left(\mathrm{ft}^{3}\right)=$	4,038	
1-year, 24-hour storm (Peak Flow)		
Runoff (inches) $=Q^{*}{ }_{1 \text {-year }}=$	1.14	1.90
Volume of runoff (ft^{3}) $=$	7,895	13,185
Volume change (ft^{3}) $=$	5,290	
Peak Discharge (cfs)= $Q_{1 \text {-year }}=$	2.510	5.732
2-year, 24-hour storm (LID)		
Runoff (inches) $=Q^{*}{ }_{2 \text {-year }}=$	1.60	2.47
Volume of runoff (ft^{3}) $=$	11,126	17,129
Peak Discharge (cfs) $=\mathrm{Q}_{2 \text {-year }}=$	3.538	7.447
10-year, 24-hour storm (DIA)		
Runoff (inches) $=\mathrm{Q}^{*}{ }_{10 \text {-year }}=$	3.02	4.08
Volume of runoff (ft^{3}) $=$	20,906	28,292
Peak Discharge (cfs) $=Q_{10 \text {-year }}=$	6.648	12.300

DA SITE SUMMARY STORMWATER PRE-POST CALCULATIONS

SITE SUMMARY										
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development (1-year, 24-hour storm)										
Runoff (in) $=\mathrm{Q}_{\text {pre, } 1 \text {-year }}=$	1.14									
Peak Flow (cfs) $=\mathrm{Q}_{1 \text {--year }}=$	2.510									
Post-Development (1-year, 24-hour storm)										
Proposed Impervious Surface (acre) =	1.13									
Runoff (in) $=\mathrm{Q}_{1 \text {-year }}=$	1.90									
Peak Flow (cfs) $=\mathrm{Q}_{1 \text {--year }}=$	5.732									
Increase in volume per DA (ft $\left.{ }^{3}\right)_{-} 1$-yr storm $=$	5,290									
Minimum Volume to be Managed for DA HIGH DENSITY REQUIREMENT $=\left(\mathrm{ft}^{3}\right)=$	4,038									
TARGET CURVE NUMBER (TCN)										
Site Data										
SITE ISOIL COMPOSITION										
HYDROLOGIC SOIL GROUP				Site Area		\%		Target CN		
A				0.00		0\%		N/A		
B				0.00		0\%		N/A		
C				0.00		0\%		N/A		
D				1.91		100\%		N/A		
Total Site Area (acres) $=$						1.91				
Percent BUA (Includes Existing Lakes/Pond Areas) $=$						59\%				
Project Density $=$						High				
Target Curve Number (TCN) =						N/A				
$\mathrm{CN}_{\text {adjusted (1-year) }}=$						91				
Minimum Volume to be Managed (Total Site) Per TCN Requirement= $\mathrm{ft}^{3}=$						N/A				
Site Nitrogen Loading Data										
HSG		TN export coefficient (lbs/ac/yr)				Site Acreage		$\xrightarrow[\text { Export }]{\mathrm{N}}$		
Pasture		1.2				0.00		0.00		
Woods, Poor Condition		1.6				0.00		0.00		
Woods, Fair Condition		1.2				0.00		0.00		
Woods, Good Condition		0.8				0.00		0.00		
Open Space, Poor Condition		1.0				0.00		0.00		
Open Space, Fair Condition		0.8				0.00		0.00		
Open Space, Good Condition		0.6				0.78		0.47		
Reforestation (in dedicated OS)		0.6				0.00		0.00		
Impervious		21.2				1.13		23.96		
SITE NITROGEN LOADING RATE (lbs/ac/yr)=		12.79								
Nitrogen Load ($\mathrm{lbs} / \mathrm{yr}$) $=$		24.42								
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_Wendell Only=		17.55								
Site Nitrogen Loading Data For Expansions Only										
		Existing				New				
Impervious(acres)=		NA				NA				
"Expansion Area" (acres=)										
Nitrogen Load (lbs/yr)=		NA				NA				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=		NA				NA				
Total Site loading rate (lbs/ac/yr)										
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)= NA		NA								

Project Name:
DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES AND ADJUSTMENTS

DA1 Site Acreage=	1.91													
DA1 Off-Site Acreage=														
Total Required Storage Volume for Site TCN Requirement $\left(\mathrm{ft}^{3}\right)=$	N/A													
Total Required Storage Volume for DA1 1" Rainfall for High Density $\left(\mathrm{ft}^{3}\right)=$	4,038													
Will site use underground detention/cistern?	Yes	Enter \% of the year water will be reused=			0\%			Note: Supporting information/details should be submitted to demonstrate water usage.						
ENTER ACREAGE FOR ALL SUB-DRAINAGE AREAS IN DA														
HSG		Sub-DA1(a) (Ac)		$\begin{aligned} & \text { Sub-DA1(b) } \\ & (\mathbf{A c}) \end{aligned}$		$\begin{aligned} & \text { Sub-DA1(c) } \\ & (\mathbf{A c}) \end{aligned}$		Sub-DA1(d) (Ac)		$\begin{aligned} & \hline \text { Sub-DA1(e) } \\ & (\mathbf{A c}) \\ & \hline \end{aligned}$				
		Site	Off-site											
Pasture														
Woods, Poor Condition														
Woods, Fair Condition														
Woods, Good Condition														
Open Space, Poor Condition														
Open Space, Fair Condition														
Open Space, Good Condition		0.22		0.56										
Reforestation (in dedicated OS)														
Impervious		1.00		0.13										
Sub-DA1(a) BMP(s)														
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft^{3})			Provided Volume that will drawdown 2-5 days (ft ${ }^{3}$)			$\begin{array}{\|c\|} \hline \text { Nitrogen } \\ \text { Removal } \\ \text { Efficiency } \end{array}$	Sub-DA Nitrogen (lbs)	Nitrogen Removed (bs)	Drawdown Time (hours)			
Underground Chambers w/ StormFilter	Bioretention with IWS	2,308			3,065			40\%	21.33	8.53				
@ 85\% TSS \& 50\% Nitrogen removal					0\%	12.80	0.00							
					0\%	12.80	0.00							
					0\%	12.80	0.00							
					0\%	12.80	0.00							
Total Nitrogen remaining leaving the subbasin (lbs):		12.80												
Sub-DA1 (b) BMP(s)														
If Sub-DA1(b) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(lbs):		Water Quality Volume for Sub-DA (ft ${ }^{3}$)												
Device Name (As Shown on Plan)	Device Type					Provide ume tha down 2-5 (ft ${ }^{3}$)		$\begin{array}{\|c\|} \hline \text { Nitrogen } \\ \text { Removal } \\ \text { Efficiency } \end{array}$	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)			
BYPASS		279						0			0\%	3.09	0.00	
					0\%	3.09	0.00							
					0\%	3.09	0.00							
					0\%	3.09	0.00							
					0\%	3.09	0.00							
Total Nitrogen remaining leaving the subbasin (lbs):		3.09												
Sub-DA1 (c) BMP(s)														
If Sub-DA1 (c) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(lbs):														
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft^{3})						Provided Volume that will drawdown 2-5 days (ft ${ }^{3}$)			$\begin{array}{\|l\|} \hline \text { Nitrogen } \\ \text { Removal } \\ \text { Efficiency } \end{array}$	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
											0\%	0.00	0.00	
								0\%	0.00	0.00				
								0\%	0.00	0.00				
								0\%	0.00	0.00				
								0\%	0.00	0.00				
Total Nitrogen remaining leaving the subbasin (lbs):														

Project Name:
DRAINAGE AREA 1 BMP CALCULATIONS
WAKE
COUNTY
Sub-DA1(d) BMP(s)

If Sub-DA1(d) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(lbs):		Water Quality Volume for Sub-DA (ft^{3})	Provided Volume that will drawdown 2-5 days (ft ${ }^{3}$)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	$\begin{array}{\|c} \text { Drawdown } \\ \text { Time } \\ \text { (hours) } \end{array}$
Device Name (As Shown on Plan)	Device Type						
				0\%	0.00	0.00	
				0\%	0.00	0.00	50
				0\%	0.00	0.00	
				0\%	0.00	0.00	
				0\%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (lbs):							
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(lbs):							
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ${ }^{3}$)	Provided Volume that will drawdown 2-5 days $\left(\mathrm{ft}^{3}\right)$	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	$\begin{array}{\|c\|} \hline \text { Drawdown } \\ \text { Time } \\ \text { (hours) } \end{array}$
				0\%	0.00	0.00	
				0\%	0.00	0.00	
				0\%	0.00	0.00	
				0\%	0.00	0.00	
				0\%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (lbs):							
DA1 BMP SUMMARY							
	Total Volume Treated (ft^{3})=		3,065				
	Nitrogen Mitigated(lbs)=		8.53				
1-year, 24-hour storm							
	Post BMP Volume of Runoff ($\left.\mathrm{ft}^{3}\right)_{(1 \text {-year }}=$		10,120				
	Post BMP Runoff (inches) $=\mathrm{Q}^{*}(1$ - year $)=$		1.46				
	Post BMP CN ${ }_{(1 \text { - - year })}=$		84				
	Post BMP Peak Discharge (cfs) $=\mathrm{Q}_{1 \text {-year }}=$		1.708				
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) (2-year $)=$		14,064				
	Post BMP Runoff (inches) $=\mathrm{Q}^{*}(2$-year $)=$		2.03				
	Post BMP CN ${ }_{(2 \text {-year })}=$		85				
	Post BMP Peak Discharge (cfs) $=\mathrm{Q}_{(2 \text {-year })}=$		2.952				
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff $\left(\mathrm{ft}^{3}\right)_{(10-\text {-eear })}=$		25,227				
	Post BMP Runoff (inches) $=\mathrm{Q}^{*}(10$-year $)=$		3.64				
	Post BMP CN $(10$-year $)=$		98				
	Post BMP Peak Discharge (cfs) $=\mathrm{Q}_{(10 \text {-year })}=$		5.315				

\square

DA SITE SUMMARY

BMP CALCULATIONS

BMP SUMMARY

DRAINAGE AREA SUMMARIES

DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development (1-year, 24-hour storm)										
Runoff (in) $=\mathrm{Q}^{*}{ }_{1 \text {-year }}=$	1.14									
Peak Flow (cfs) $=\mathrm{Q}_{1 \text {-year }}=$	2.510									
Post-Development (1-year, 24-hour storm)										
Target Curve Number (TCN) =	NA									
Post BMP Runoff (inches) $=\mathrm{Q}^{*}{ }_{(1-\text {-year) }}=$	1.46									
Post BMP Peak Discharge (cfs) $=Q_{1 \text {--year }}=$	1.708									
Post BMP CN $\left.{ }_{(1 \text {-year }}\right)^{\prime}$	84									
Post-BMP Nitrogen Loading										
TOTAL SITE NITROGEN MITIGATED (lbs)=	8.53									
SITE NITROGEN LOADING RATE (lbs/ac/yr)=	8.32									
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=	9.02									

LOW IMPACT DEVELOPMENT SUMMARY

DRAINAGE AREA SUMMARIES

DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development										
Runoff (in) $=\mathrm{Q}_{\text {pre_2-year }}=$	1.60									
Total Runoff Volume (ft^{3})=	11,126									
Peak Flow (cfs) $=\mathrm{Q}_{2 \text {-year }}=$	3.538									
Post-Development										
2-year, 24-hour storm (LID)										
Post BMP Runoff (inches) $=\mathrm{Q}^{*}{ }_{(2 \text {-year })}=$	2.03									
Post BMP Peak Discharge (cfs) $=\mathrm{Q}_{(2 \text {-year })}=$	2.952									
Post BMP Volume of Runoff (ft3) $)_{(2 \text {-year })}=$	14,064									
Does Runoff meet LID requirements?	No									
Does Peak Flow meet LID requirements?	Yes									
Does Runoff Volume meet LID requirements?	No									

SITE SUMMARY

Site Data	
Target CN $=$	N/A
Post-Development CN $=$	85
Does CN meet LID requirements?	

LID CHECKLIST

Complete the below checklist if all requirements have been met above:

LID Narrative (limit to 600 characters - attach additional pages with submittal if necessary):
Describe in detail how the proposed development has utilized "Natural Site Design". Narrative should include the location of site buildings, roads and other land
disturbances in the least environmentally-sensitive areas, preservation of steep slopes, and preservation of naturally well draining soils and other hydrologically
valuable features.

DOWNSTREAM IMPACT ANALYSIS SITE SUMMARY

 north carouna
DRAINAGE AREA SUMMARIES

DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development										
Peak Discharge (cfs) $=\mathrm{Q}_{10 \text {-year }}=$	6.65									
Volume of Runoff $\left(\mathrm{ft}^{3}\right)_{(10 \text {-year })}=$	20,906									
Post-Development										
10-year, 24-hour storm (DIA)										
Post BMP Peak Discharge (cfs) $=\mathrm{Q}_{(10 \text {-year }}=$	5.32									
Post BMP Volume of Runoff $\left(\mathrm{ft}^{3}\right)_{(10-\text {-ear }}=$	25,227									

CALCULATIONS AND REFERENCE

TARGET CURVE NUMBER				
MAXIMUM CURVE NUMBER AFTER DEVELOPMENT				
PROJECT DENSITY	A	B	C	D
Ultra-Low	43	63	76	81
Low	48	66	78	83
High	N/A	N/A	N/A	N/A

WEIGHTED CURVE NUMBER				
RUNOFF CURVE NUMBERS FOR URBAN AREAS				
LAND USE	A	B	C	D
Pasture	39	61	74	80
Woods, Poor Condition ${ }^{1}$	45	66	77	83
Woods, Fair Condition ${ }^{2}$	36	60	73	79
Woods, Good Condition ${ }^{3}$	30	55	70	77
Open Space, Poor Condition ${ }^{4}$	68	79	86	89
Open Space, Fair Condition ${ }^{5}$	49	69	79	84
Open Space, Good Condition ${ }^{6}$	39	61	74	80
Reforestation (in dedicated OS) ${ }^{7}$	30	55	70	77
Impervious ${ }^{\text {8 }}$	98	98	98	98

Notes: $\quad{ }^{1}$ Poor Condition = Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning
${ }^{2}$ Fair Condition = Woods are grazed but not burned, and some forest litter covers the soil,
${ }^{3}$ Good Condition $=$ Woods that are protected from grazing, litter, and brush adequately cover the soil
${ }^{4}$ Poor Condition $=$ Grass Cover < 50% (lawns, parks, golf courses, cemeteries, etc.)
${ }^{5}$ Fair Condition $=$ Grass Cover $=50 \%-75 \%$ (lawns, parks, golf courses, cemeteries, etc.)
${ }^{6}$ Good Condition $=$ Grass Cover $>75 \%$ (lawns, parks, golf courses, cemeteries, etc.)
${ }^{7}$ Includes paved/gravel/compacted soil driveways and roads, roofs, etc.
${ }^{8}$ Includes paved/gravel/compacted soil driveways and roads, roofs, etc.

SCS RUNOFF METHOD
$\mathbf{Q}^{*}=(\mathrm{P}-.2 \mathrm{~S})^{2} /(\mathrm{P}+.8 \mathrm{~s})$
Where:
$\mathrm{Q}^{*}=$ Runoff (in)
$\mathrm{P}=$ Precipitation (in)

DISCRETE RUNOFF METHOD (HIGH DENSITY ONLY)
$Q^{*}{ }_{\text {High }}=Q^{*}{ }_{\text {(imp) }} \times \mathrm{DA}_{(\text {(imp) }}+\mathrm{Q}^{*}$ (pervious) \times DA ${ }_{\text {(pervious) }}$
$Q^{*}{ }_{\text {(imp) }}=$ Runoff from Impervious Area (in)
$\mathrm{DA}_{\text {(imp) }}=$ Drainage from impervious area (acre)
Q^{*} (penious) ${ }^{\text {e }}$ Runoff from pervious area (in)
$\mathrm{DA}_{\text {(perious) }}=$ Drainage from pervious area (acre)

PEAK FLOW

Method: TR-55 Graphical Peak Discharge Method for Type II Distribution

$Q_{p}=q_{u} A m Q^{*} F p$

Where:
$Q_{\mathrm{p}}=$ Peak Discharge (cfs)
$\mathrm{q}_{\mathrm{u}}=$ Unit peak discharge (csm/in) TR-55 Appendix F
$\mathrm{A}_{\mathrm{m}}=$ Drainage Area (mi')
$\mathrm{Q}^{*}=$ runoff (inches)
$\mathrm{F}_{\mathrm{p}}=$ pond adjustment factor

Limitations: The watershed must be hydrologically homogeneous
The watershed may have only one main stream or, if more than one, the branches must have nearly equal T ' 's.
The Fp factor can be applied only for ponds or swamps that are not in the T_{c} flow path
This method should be used only if the weighted CN is greater than 40 .
When this method is used to develop estimates of peak discharge for both pre and post development, use the same procedure for estimating Tc.
T_{c} values with this method may range from 0.1 to 10 hours.

[^0]: * Composite $($ Area/CN $)=+(0.800 \times 80)] / 0.800$

[^1]: * Composite $($ Area/CN $)=[(0.110 \times 98)+(0.060 \times 80)] / 0.170$

[^2]: * Composite $($ Area $/ C N)=[(4.930 \times 98)+(9.310 \times 80)] / 14.240$

[^3]: * Composite $($ Area/CN $)=[(5.220 \times 98)+(7.940 \times 80)] / 13.160$

[^4]: * Composite $($ Area $/ C N)=+(0.800 \times 80)] / 0.800$

[^5]: * Composite $($ Area/CN $)=[(0.110 \times 98)+(0.060 \times 80)] / 0.170$

[^6]: * Composite $($ Area/CN $)=+(0.500 \times 80)] / 0.500$

[^7]: * Composite (Area/CN) $=[(0.020 \times 98)] / 0.020$

[^8]: * Composite $($ Area/CN $)=[(2.180 \times 98)+(3.600 \times 80)] / 5.780$

[^9]: * Composite $($ Area/CN $)=[(2.320 \times 98)+(2.780 \times 80)] / 5.100$

[^10]: * Composite $($ Area $/ C N)=[(4.930 \times 98)+(9.310 \times 80)] / 14.240$

[^11]: * Composite $($ Area $/ C N)=[(5.220 \times 98)+(7.940 \times 80)] / 13.160$

[^12]: * Composite $($ Area/CN $)=[(0.110 \times 98)+(0.060 \times 80)] / 0.170$

[^13]: * Composite $($ Area/CN $)=[(2.320 \times 98)+(2.780 \times 80)] / 5.100$

[^14]: * Composite $($ Area $/ C N)=[(4.930 \times 98)+(9.310 \times 80)] / 14.240$

[^15]: * Composite $($ Area $/ C N)=[(5.220 \times 98)+(7.940 \times 80)] / 13.160$

