

8312 Creedmoor Road Raleigh, NC 27613 919.848.6121 Phone 919.848.3741 Fax

www.csitedesign.com

Stormwater Management & Sediment/Erosion Control Report

Submitted to: Town of Zebulon, NC & Wake County, NC

> Prepared for: COOKOUT 1200 N Arendell Avenue Zebulon, NC 27597

CSD Project No: OUT-1502

NTS

Prepared by: COMMERCIAL SITE DESIGN, PLLC 8312 Creedmoor Road Raleigh, North Carolina 27613

> Date: 10/24/2022 Rev. 7/21/2023 Rev. 11/6/2023

Table of Contents

Project Narrative
Adjacent Areas
Existing Conditions
Proposed Conditions
Critical Erosion Areas
Erosion and Sediment Control Measures
Silt Fence
Vegetative Stabilization
Temporary Stabilization
Construction Sequence
Temporary Erosion and Sediment Control Maintenance
Proposed Stormwater Management Requirements
Water Quantity Control Requirements and Compliance Methods
Water Quality Treatment Requirements
Downstream Impact Analysis
Calculation Methodology
Stormwater SCM Maintenance

List of Appendices:

A A	
Appendix A – Maps (USDA, FEM	MA, USGS, Pre- & Post-Development Impervious)
Appendix B – Pre- & Post-Develo	opment Hydrograph Calculation Report & WQv Calculations
Appendix C – Vegetated Channel	& Rip Rap Apron Calculations
Appendix D –Jones Street Gutter	Spread Calculations
Appendix E – Additional Forms (SCM Maintenance Agreement (DRAFT), Municipal Stormwater Tool)
Appendix F – Downstream Impac	et Analysis Exhibit Figure

Project Narrative

This report addresses stormwater runoff quantity volume control, water quality treatment and peak flow reduction for site improvements of an existing site in Zebulon, NC. The property is located on N. Arendell Ave. +/-900LF northeast of US-64. The property coordinates are 35° 50' 12.336" N; 78° 19' 18.876" W. The existing property is an undeveloped open space area. The proposed development of this site includes the construction of a 4,625 SF single-story fast-food restaurant with associated parking. The total site area is 83,368 SF with 0 SF of existing impervious area. After proposed development the site consists of 48,983 SF of impervious area.

Adjacent Areas

The site is bounded by commercial development. Limits of disturbance for this project remain on-site with the exception of utility connections.

Existing Conditions

The on-site runoff sheet flows from the center of the property and sheet flows off-site. Proposed development maintains existent drainage patterns.

Site Area = 83,368 SF Existing Open Space = 83,368 SF Existing Impervious = 0 SF

The USDA Soils Survey mapping included in Appendix A shows that the soils on-site are primarily Ur – Urban Land and WeB – Wedowee sandy loam, 2 to 6 percent slopes, both belonging to Hydrologic Soil Group D.

Proposed Conditions

The proposed development consist of a single-story 4,625 SF building with curb islands and associated parking. The development will result in 48,983 SF of impervious surface area being added to the site. In the post-development condition, stormwater runoff enters a proposed stormwater conveyance system then flows into an underground detention system. A portion of the detained runoff is directed through a Contech StormFilter water quality device, prior to exiting the site. Runoff volumes in excess of the water quality volume are detained and released at or below pre-development flow rates via the use of a multistage outlet control structure. The outlet pipe from the outlet control structure daylights in the rear of property along Jones Street.

Site Area = 83,368 SF Proposed Open Space = 34,385 SF Proposed Impervious = 48,983 SF

Critical Erosion Areas

The most critical erosion area will be the surface of the working areas during construction operations. If grass is not established on dormant denuded areas then there is a significant potential for the covered areas to be eroded and for sediment to be carried in the runoff. To minimize the potential for erosion, covered areas that are temporarily inactive will be seeded within 14 working days after placement of the soil cover.

Erosion and Sediment Control Measures

All vegetative practices and erosion and sediment control features shall be designed, constructed, and maintained in accordance with the NCDEQ Erosion and Sediment Control and Wake County requirements. The erosion and sediment control plan shall be kept on site in a mailbox type structure located immediately adjacent to the posted permits if needed. Sediment shall be removed from the sediment control structures as necessary, but at a minimum of when the design capacity of each structure is reduced by 50%. Plan-view drawings with details and these same requirements are provided.

Silt Fence

Sediment fences will be provided down gradient of the proposed site grading at the locations shown on the drawings. Silt fences are not to be used across channels or in areas of concentrated flows.

Vegetative Stabilization

Vegetative cover shall be re-established within 14 calendar days after completion of the activity. Refer to plans for temporary and permanent seeding schedule and specifications.

Temporary Stabilization

Disturbed areas will be vegetated in accordance with NCDEQ Erosion and Sediment Control and Wake County requirements. Temporary control features will remain in place and will be maintained until the up-gradient disturbed area has been stabilized with vegetative cover.

Construction Sequence

The contractor is responsible for ensuring that erosion is minimized and that compliance with all applicable federal, state, and local laws, regulations, and ordinances are maintained throughout execution of this project.

Phase 1:

- 1. Obtain a land disturbing permit. Schedule a pre-construction meeting.
- 2. Install gravel construction pad, temporary diversions, silt fence, or other measures as shown on the approved plan. Clear only as necessary to install these devices. Seed temporary diversions and berms immediately after construction. See detail on seeding schedule. Contractor shall begin with sediment fencing and all other sediment containment devices followed by all diversion and by-pass ditches/berms and approved inlet protection devices.
- 3. Contact Karyn Pageu @ 919-786-8769 for a compliance inspection immediately following installation of the temporary sediment control devices and prior to mass grading of the site.

Phase 2:

1. Begin clearing/grubbing and general excavation on site. It is the responsibility of the contractor to phase/stage erosion control to allow for construction.

Note: Contractor shall inspect and repair all erosion devices at least once a week and after every rainfall. Grading activity shall be prohibited in the areas of the sediment control devices until the areas upstream of these devices have been stabilized and approved.

2. Begin installing upstream storm drainage system. Install approved inlet protection. Additional measures may be required by the inspector due to the routing of the storm drainage system and actual field conditions.

Note: the contractor shall ensure that the erosion control devices remain undisturbed during construction of the building pads and associated parking/drive areas adjacent to these devices until the contributing upstream areas have been stabilized and approved. Erosion control measures shall not be removed until approval from the environmental inspector.

3. Stabilize site as areas are brought up to finish grade with vegetation, paving, ditch linings, etc. Seed and mulch denuded areas within 14 working days or 30 calendar days after completion of any phase of construction, whichever period is stabilized. All areas shall be stabilized within 30 days.

Note: the contractor shall ensure that the erosion control devices remain undisturbed during construction of the building pads and associated parking/drive areas adjacent to these devices until the contributing upstream areas have been stabilized and approved.

Phase 3:

- 1. When construction is complete and all areas are stabilized completely, call for inspection by environmental inspector. When site is approved, remove silt fencing, inlet protection, etc. and seed or pave any resulting bare areas. All remaining permanent erosion control devices, such as outlet protection and permanent swale vegetation, should now be installed or brought online.
- 2. When vegetation has become established, call for a final site inspection by the environmental inspector. Obtain a certificate of completion.

Temporary Erosion and Sediment Control Maintenance

All erosion and sediment control measures will be checked for stability and operation following every runoff-producing rainfall but in no case less than twice every week, at least 72 hours apart. Any needed repairs will be made immediately to maintain all measures as designed.

Sediment fences and inlet protection shall be inspected at least twice every week, at least 72 hours apart. Repairs shall be made immediately. Sediment deposits shall be removed as needed to provide adequate storage volume for the next rainfall event, and to reduce pressure on the fence. Fencing materials and sediment deposits shall be removed, and the area brought to grade following stabilization of up gradient disturbed areas.

Proposed Stormwater Management Requirements

The stormwater management controls proposed provide water quantity volume control, peak flow reduction and water quality treatment. The Appendices of this report provide detailed information regarding the hydrology and water quality improvements for the pre- and post-development conditions for the site.

Water Quantity Control Requirements and Compliance Methods

This project is located within the City of Zebulon city limits and is subject to the City of Zebulon Code of Ordinances Chapter 151 – Stormwater. Per Chapter 151.35, high-density projects shall control and treat runoff from the first inch of rainfall, and shall feature BMPs designed to ensure no net increase in peak flow rates leaving the site from the pre-development conditions for the one-year, 24-hour storm. Additionally, per Chapter 151.36 (A), a downstream impact analysis shall be performed to ensure the project will not cause any negative impacts on flooding or channel degradation downstream of the project site.

In order to address these water quantity control requirements, this project proposes to install an underground detention system with a multi-stage outlet control structure. Stormwater flows have been modeled for on-site and off-site pre- and post-development flow rates to ensure compliance with the above stated regulations. In the post-development conditions, the 1-year and 10-year 24-hour flow rates are controlled to below the pre-development conditions at each respective analysis point, as indicated on the Downstream Drainage Analysis Map within Appendix F. Please see Appendix B for supporting on and off-site water quantity calculations and further information.

Water Quality Treatment Requirements

The project is located within the Neuse River watershed basin and is subject to water quality treatment requirements listed in the City of Zebulon Code of Ordinances, Chapter 151.35 (D) consisting of treatment to remove 85% TSS from the first 1.0" of rainfall on-site. Post-construction runoff will be treated with a primary SCM (Contech StormFilter) which will provide the TSS treatment requirements per the City of Zebulon Ordinances. The StormFilter will be designed and sized in accordance with NCDEQ minimum design criteria listed in the NCDEQ Stormwater Design Manual, chapter D-1. See Appendix C and D for details.

Downstream Impact Analysis

A downstream impact analysis was performed in accordance with section 151.36 of the Zebulon Code of Ordinances to ensure there are no impacts on flooding or channel degradation downstream as a result of this project. Topographic mapping of the site as well as the downstream drainage areas was reviewed during the preparation of this analysis. Two downstream drainage areas and analysis points were identified and modeled using Hydraflows Hydrographs and the NRCS SCS-Method. Pre-development and post-development hydrograph models were prepared and used to confirm there were no increases in the 10-year, 24-hour storm flow rates at the site boundaries nor at the downstream analysis points. Please see the summary of findings below, as well as the attached Hydraflows Hydrograph calculations (Appendix B) and Downstream Impact Analysis exhibit figure (Appendix F).

10-Year, 24-Hour Storm Peak Flow Summary Table:								
Analysis Point:	DA-1	DA-1	DA-2	DA-2				
Analysis Folint.	(On-Site)	(Downstream)	(On-Site)	(Downstream)				
Pre-Development	3.48 CFS	15.88 CFS	4.82 CFS	32.71 CFS				
Post-Development	1.12 CFS	14.35 CFS	2.56 CFS	32.71 CFS				

Calculation Methodology

- The rainfall data was taken from NOAA Atlas 14. This rainfall depth was then input into Hydraflow 2017 along with a CN using the SCS method for pre- and post-development flow rates. Please reference the Appendix B within this report for additional information.
- Soils data for the site was taken from the NRCS USDA web soil survey website (http://websoilsurvey.nrcs.usda.gov/). Please reference the miscellaneous site data section within this report for additional information.
- The on- and off-site topography used in the analysis is from a field survey by Commercial Site Design.

Stormwater SCM Maintenance

Frequent, thorough, and consistent inspections and maintenance are critical to the successful operation of the stormwater control measures. Inspections reveal the operational status of the system and identify needed maintenance actions. Therefore, the individuals responsible for inspecting and maintaining the SCM should thoroughly understand the stormwater control measures and processes. The type and frequency of maintenance for a specific stormwater system is determined by inspection results and the maintenance schedule for each stormwater device being proposed. Maintenance should be performed in accordance with system design information and safety procedures provided in Appendices. Performing timely maintenance is important in preventing system failure and will be less expensive in the long-term.

Construction Maintenance

During construction, the project site owner must implement a self-monitoring program that includes a written site evaluation of all erosion control measures and SCMs after each measurable storm event, and at least one time per week, in accordance with the requirements in the stormwater manual. All measures and controls must be repaired and maintained in proper operating condition.

Post-Construction Maintenance

After all construction activity has been completed, SCM maintenance is the responsibility of the property owner.

APPENDIX A

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

Natural Resources Conservation Service

USDA

Web Soil Survey National Cooperative Soil Survey 10/17/2023 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ur	Urban land		1.9	76.5%
WeB	Wedowee sandy loam, 2 to 6 percent slopes	В	0.6	23.5%
Totals for Area of Intere	st	2.5	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

National Flood Hazard Layer FIRMette

0

250

500

1,000

1,500

2,000

Legend

regulatory purposes.

78°19'39"W 35°50'26"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs 3720179600K OTHER AREAS Area of Undetermined Flood Hazard Zone D eff. 7/19/2022 7/19/202 - - - - Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary ---- Coastal Transect Baseline OTHER Profile Baseline FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap 3720270500 accuracy standards eff. 7/19/2022 The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/17/2023 at 2:48 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 78°19'2"W 35°49'57"N Feet 1:6,000 unmapped and unmodernized areas cannot be used for

Basemap Imagery Source: USGS National Map 2023

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

SCALE 1:24 000 ogical Survey of 1983 (NAD83) of 1984 (WGS84). Proje tion and Zone 175 CAROLINA 9'31' 169 MILS 1*34 NAIP, May 2 Census 2016 November 2016 Bureau, 2016GNIS, 1980 - 2019 Dataset, 1899 - 2018 tion Dataset, 2008 file 2017 - 2018 J DEET U.S. DECUN 1 2 3 4 5 6 7 8 anal Hydrography I ...National Elevat see metadars 1 Rolesville 2 Bunn West 3 Bunn East 4 Knightdale 5 Middlesex 6 Clayton CONTOUR INTERVAL 10 FEET NORTH AMERICAN VERTICAL DATUM OF 1988 U.S. N iources; 1983 This map was produced to conform with the National Geospatial Program US Topo Product Standard, 2011. A metadata file associated with this product is draft version 0.6.18 av

ZEBULON, NC 2019 *7643016379377* NSN. 7643016379377* NSN. 2643016379377

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

The National Map US Topo

APPENDIX B

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Legend

Hyd. Origin **Description** SCS Runoff Pre-Development (DA-1) 1 2 SCS Runoff Post-Development (DA-1) 3 SCS Runoff Pre-Development (DA-2) 4 SCS Runoff Post-Development (DA-2 Detained) 5 SCS Runoff Post-Development (DA-2 BP1) 6 SCS Runoff Post-Development (DA-2 BP2) 7 Reservoir Underground Detention 8 Combine Post-Development (DA-2) 10 SCS Runoff Pre-Development Downstream DA-1 11 SCS Runoff Post-Development Downstream DA-1 12 SCS Runoff Pre-Development Downstream DA-2 13 SCS Runoff Post-Development Downstream DA-2 (w/out Site) 14 Combine Post-Development Downstream DA-2

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

lyd.	Hydrograph	Inflow		Peak Outflow (cfs)							Hydrograph	
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description	
1	SCS Runoff		1.300				3.476			6.368	Pre-Development (DA-1)	
2	SCS Runoff		0.558				1.115			1.800	Post-Development (DA-1)	
3	SCS Runoff		1.803				4.823			8.836	Pre-Development (DA-2)	
4	SCS Runoff		4.393				8.324			13.16	Post-Development (DA-2 Detained)	
5	SCS Runoff		0.594				1.614			2.978	Post-Development (DA-2 BP1)	
6	SCS Runoff		0.077				0.140			0.218	Post-Development (DA-2 BP2)	
7	Reservoir	4	0.433				0.932			12.95	Underground Detention	
8	Combine	5, 6, 7	1.029				2.563			15.34	Post-Development (DA-2)	
10	SCS Runoff		6.955				15.88			27.13	Pre-Development Downstream DA-1	
1	SCS Runoff		6.438				14.35			24.26	Post-Development Downstream DA-	
12	SCS Runoff		13.97				32.71			56.56	Pre-Development Downstream DA-2	
13	SCS Runoff		13.56				31.00			53.02	Post-Development Downstream DA-	
14	Combine	8, 13	14.29				32.71			55.83	Post-Development Downstream DA-	
	j. file: OUT-′										1 / 2 / 2023	

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.300	2	722	3,410				Pre-Development (DA-1)
2	SCS Runoff	0.558	2	716	1,169				Post-Development (DA-1)
3	SCS Runoff	1.803	2	722	4,731				Pre-Development (DA-2)
4	SCS Runoff	4.393	2	716	9,562				Post-Development (DA-2 Detained)
5	SCS Runoff	0.594	2	728	2,104				Post-Development (DA-2 BP1)
6	SCS Runoff	0.077	2	716	178				Post-Development (DA-2 BP2)
7	Reservoir	0.433	2	740	9,558	4	331.87	5,095	Underground Detention
8	Combine	1.029	2	728	11,840	5, 6, 7			Post-Development (DA-2)
10	SCS Runoff	6.955	2	736	33,756				Pre-Development Downstream DA-1
11	SCS Runoff	6.438	2	736	31,203				Post-Development Downstream DA-1
12	SCS Runoff	13.97	2	744	79,332				Pre-Development Downstream DA-2
13	SCS Runoff	13.56	2	744	76,855				Post-Development Downstream DA-2
OUT-1502 Model.gpw				Return F	Period: 1 Ye	ear	Thursday,	11 / 2 / 2023	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Development (DA-1)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.300 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 3,410 cuft
Drainage area	= 0.800 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.20 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (0.800 x 80)] / 0.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Development (DA-1)

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.46 = 3.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 11.67	+	0.00	+	0.00	=	11.67
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 160.00 = 1.20 = Unpaved =1.77	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.51	+	0.00	+	0.00	=	1.51
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Post-Development (DA-1)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.558 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 1,169 cuft
Drainage area	= 0.170 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (0.060 x 80)] / 0.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 11 / 2 / 2023

Hyd. No. 3

Pre-Development (DA-2)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.803 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 4,731 cuft
Drainage area	= 1.110 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.40 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (1.110 x 80)] / 1.110

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Development (DA-2)

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.46 = 3.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 10.97	+	0.00	+	0.00	=	10.97
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 215.00 = 2.36 = Unpaved =2.48	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.45	+	0.00	+	0.00	=	1.45
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
8 ()							
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 11 / 2 / 2023

Hyd. No. 4

Post-Development (DA-2 Detained)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.393 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 9,562 cuft
Drainage area	= 1.220 ac	Curve number	= 95*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.220 x 80)] / 1.220

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Post-Development (DA-2 BP1)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.594 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,104 cuft
Drainage area	= 0.500 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (0.500 x 80)] / 0.500

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Post-Development (DA-2 BP1)

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 208.0 = 3.46 = 2.60		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 22.20	+	0.00	+	0.00	=	22.20
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 105.00 = 2.00 = Unpaved =2.28	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.77	+	0.00	+	0.00	=	0.77
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)		+	0.00		0.00	_	0.00
naver nine (nini)	= 0.00	т	0.00	+	0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Post-Development (DA-2 BP2)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.077 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 178 cuft
Drainage area	= 0.020 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98)] / 0.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Underground Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.433 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 9,558 cuft
Inflow hyd. No.	= 4 - Post-Development	(DA-2 Destained evation	= 331.87 ft
Reservoir name	= UG Detention System	Max. Storage	= 5,095 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - UG Detention System

Pond Data

UG Chambers -Invert elev. = 330.00 ft, Rise x Span = 4.00 x 4.00 ft, Barrel Len = 123.00 ft, No. Barrels = 8, Slope = 0.25%, Headers = No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	330.00	n/a	0	0
0.43	330.43	n/a	389	389
0.86	330.86	n/a	1,096	1,485
1.29	331.29	n/a	1,420	2,905
1.72	331.72	n/a	1,600	4,505
2.15	332.15	n/a	1,680	6,185
2.58	332.58	n/a	1,680	7,866
3.02	333.02	n/a	1,600	9,466
3.45	333.45	n/a	1,419	10,885
3.88	333.88	n/a	1,095	11,980
4.31	334.31	n/a	387	12,368

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	1.33	5.00	0.00	Crest Len (ft)	= 20.00	5.00	Inactive	0.00
Span (in)	= 18.00	1.33	5.00	0.00	Crest El. (ft)	= 336.00	333.40	333.20	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	1.05	3.33
Invert El. (ft)	= 328.70	328.70	331.35	0.00	Weir Type	= 1	Rect	45 degV	
Length (ft)	= 40.00	0.50	0.50	0.00	Multi-Stage	= Yes	Yes	Yes	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.61	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Post-Development (DA-2)

Hydrograph type	= Combine	Peak discharge	= 1.029 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 11,840 cuft
Inflow hyds.	= 5, 6, 7	Contrib. drain. area	= 0.520 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-Development Downstream DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 6.955 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 33,756 cuft
Drainage area	= 5.780 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 40.10 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.180 x 98) + (3.600 x 80)] / 5.780

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-Development Downstream DA-1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 200.0 = 3.46 = 1.75		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 37.93	+	0.00	+	0.00	=	37.93
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 380.00 = 3.42 = Unpaved =2.98	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.12	+	0.00	+	0.00	=	2.12
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Flow length (ft) Travel Time (min)	({0})0.0 = 0.00	+	0.0 0.00	+		=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Post-Development Downstream DA-1

Hydrograph type Storm frequency	= SCS Runoff = 1 yrs	Peak discharge Time to peak	= 6.438 cfs = 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 31,203 cuft
Drainage area	= 5.100 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 40.10 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.320 x 98) + (2.780 x 80)] / 5.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Post-Development Downstream DA-1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 200.0 = 3.46 = 1.75		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 37.93	+	0.00	+	0.00	=	37.93
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 380.00 = 3.42 = Unpaved =2.98	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.12	+	0.00	+	0.00	=	2.12
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
					0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Flow length (ft) Travel Time (min)	({0})0.0 = 0.00	+	0.0 0.00	+		=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Pre-Development Downstream DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 13.97 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 79,332 cuft
Drainage area	= 14.240 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 49.10 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.930 x 98) + (9.310 x 80)] / 14.240

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Pre-Development Downstream DA-2

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 300.0 = 3.46 = 3.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 39.76	+	0.00	+	0.00	=	39.76
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 785.00 = 0.76 = Unpaved =1.41	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 9.30	+	0.00	+	0.00	=	9.30
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							49.10 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 11 / 2 / 2023

Hyd. No. 13

Post-Development Downstream DA-2 (w/out Site)

Hydrograph type	= SCS Runoff	Peak discharge	= 13.56 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 76,855 cuft
Drainage area	= 13.160 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 49.06 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(5.220 x 98) + (7.940 x 80)] / 13.160

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Post-Development Downstream DA-2 (w/out Site)

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 300.0 = 3.46 = 3.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 39.76	+	0.00	+	0.00	=	39.76
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 785.00 = 0.76 = Unpaved =1.41	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 9.30	+	0.00		0.00	_	0.00
	- 9.30	т	0.00	+	0.00	=	9.30
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00	T	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	-	9.30
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.00 = 0.015	T	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.015	-	9.30
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	9.30 0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Post-Development Downstream DA-2

Hydrograph type	= Combine	Peak discharge	= 14.29 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 88,695 cuft
Inflow hyds.	= 8, 13	Contrib. drain. area	= 13.160 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.476	2	720	9,030				Pre-Development (DA-1)
2	SCS Runoff	1.115	2	716	2,445				Post-Development (DA-1)
3	SCS Runoff	4.823	2	720	12,529				Pre-Development (DA-2)
4	SCS Runoff	8.324	2	716	18,925				Post-Development (DA-2 Detained)
5	SCS Runoff	1.614	2	726	5,571				Post-Development (DA-2 BP1)
6	SCS Runoff	0.140	2	716	334				Post-Development (DA-2 BP2)
7	Reservoir	0.932	2	734	18,921	4	333.22	10,157	Underground Detention
8	Combine	2.563	2	726	24,825	5, 6, 7			Post-Development (DA-2)
10	SCS Runoff	15.88	2	736	77,617				Pre-Development Downstream DA-1
11	SCS Runoff	14.35	2	736	70,388				Post-Development Downstream DA-1
12	SCS Runoff	32.71	2	742	185,978				Pre-Development Downstream DA-2
13	SCS Runoff	31.00	2	742	176,720				Post-Development Downstream DA-2
OUT-1502 Model.gpw			Return F	Period: 10 Y	/ear	Thursday,	11 / 2 / 2023		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Development (DA-1)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.476 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 9,030 cuft
Drainage area	= 0.800 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.20 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (0.800 x 80)] / 0.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Post-Development (DA-1)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.115 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 2,445 cuft
Drainage area	= 0.170 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (0.060 x 80)] / 0.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Development (DA-2)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.823 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 12,529 cuft
Drainage area	= 1.110 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.40 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (1.110 x 80)] / 1.110

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 11 / 2 / 2023

Hyd. No. 4

Post-Development (DA-2 Detained)

Hydrograph type Storm frequency Time interval	= SCS Runoff = 10 yrs = 2 min = 1.220 ac	Peak discharge Time to peak Hyd. volume Curve number	= 8.324 cfs = 11.93 hrs = 18,925 cuft = 95*
Drainage area Basin Slope Tc method Total precip. Storm duration	= 0.0 % = User = 5.14 in = 24 hrs	Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 93 = 0 ft = 5.00 min = Type II = 484

* Composite (Area/CN) = [(1.000 x 98) + (0.220 x 80)] / 1.220

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Post-Development (DA-2 BP1)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.614 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 5,571 cuft
Drainage area	= 0.500 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.00 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (0.500 x 80)] / 0.500

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Post-Development (DA-2 BP2)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.140 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 334 cuft
Drainage area	= 0.020 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98)] / 0.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Underground Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.932 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 18,921 cuft
Inflow hyd. No.	= 4 - Post-Development (DA-2	Detained evation	= 333.22 ft
Reservoir name	= UG Detention System	Max. Storage	= 10,157 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Post-Development (DA-2)

Hydrograph type Storm frequency	Combine10 yrs	Peak discharge Time to peak	= 2.563 cfs = 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 24,825 cuft
Inflow hyds.	= 5, 6, 7	Contrib. drain. area	= 0.520 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-Development Downstream DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 15.88 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 77,617 cuft
Drainage area	= 5.780 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 40.10 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.180 x 98) + (3.600 x 80)] / 5.780

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Post-Development Downstream DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 14.35 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 70,388 cuft
Drainage area	= 5.100 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 40.10 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.320 x 98) + (2.780 x 80)] / 5.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Pre-Development Downstream DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 32.71 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 185,978 cuft
Drainage area	= 14.240 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 49.10 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.930 x 98) + (9.310 x 80)] / 14.240

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Post-Development Downstream DA-2 (w/out Site)

Hydrograph type	= SCS Runoff	Peak discharge	= 31.00 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 176,720 cuft
Drainage area	= 13.160 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 49.06 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(5.220 x 98) + (7.940 x 80)] / 13.160

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Post-Development Downstream DA-2

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	6.368	2	720	16,845				Pre-Development (DA-1)
2	SCS Runoff	1.800	2	716	4,075				Post-Development (DA-1)
3	SCS Runoff	8.836	2	720	23,373				Pre-Development (DA-2)
4	SCS Runoff	13.16	2	716	30,729				Post-Development (DA-2 Detained)
5	SCS Runoff	2.978	2	726	10,392				Post-Development (DA-2 BP1)
6	SCS Runoff	0.218	2	716	528				Post-Development (DA-2 BP2)
7	Reservoir	12.95	2	718	30,725	4	334.20	12,269	Underground Detention
8	Combine	15.34	2	718	41,645	5, 6, 7			Post-Development (DA-2)
10	SCS Runoff	27.13	2	736	135,324				Pre-Development Downstream DA-1
11	SCS Runoff	24.26	2	736	121,597				Post-Development Downstream DA-1
12	SCS Runoff	56.56	2	742	327,277				Pre-Development Downstream DA-2
13	SCS Runoff	53.02	2	742	308,108				Post-Development Downstream DA-2
OU		el.gpw			Return F	Period: 100	Year	Thursday,	11 / 2 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Development (DA-1)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.368 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 16,845 cuft
Drainage area	= 0.800 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.20 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (0.800 x 80)] / 0.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Post-Development (DA-1)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.800 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 4,075 cuft
Drainage area	= 0.170 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (0.060 x 80)] / 0.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Development (DA-2)

Hydrograph type	= SCS Runoff	Peak discharge	= 8.836 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 23,373 cuft
Drainage area	= 1.110 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.40 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (1.110 x 80)] / 1.110

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 11 / 2 / 2023

Hyd. No. 4

Post-Development (DA-2 Detained)

Hydrograph type Storm frequency Time interval	= SCS Runoff = 100 yrs = 2 min	Peak discharge Time to peak Hyd. volume	= 13.16 cfs = 11.93 hrs = 30,729 cuft
Drainage area	= 1.220 ac = 0.0 %	Curve number	= 95* = 0 ft
Basin Slope Tc method	= 0.0 % = User	Hydraulic length Time of conc. (Tc)	= 5.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.000 x 98) + (0.220 x 80)] / 1.220

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Post-Development (DA-2 BP1)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.978 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 10,392 cuft
Drainage area	= 0.500 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = + (0.500 x 80)] / 0.500

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Post-Development (DA-2 BP2)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.218 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 528 cuft
Drainage area	= 0.020 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98)] / 0.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Underground Detention

Hydrograph type	= Reservoir	Peak discharge	= 12.95 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 30,725 cuft
Inflow hyd. No.	= 4 - Post-Development (DA-	-2 Destained evation	= 334.20 ft
Reservoir name	= UG Detention System	Max. Storage	= 12,269 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Post-Development (DA-2)

Hydrograph type Storm frequency	Combine100 yrs	Peak discharge Time to peak	= 15.34 cfs = 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 41,645 cuft
Inflow hyds.	= 5, 6, 7	Contrib. drain. area	= 0.520 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-Development Downstream DA-1

Hydrograph type Storm frequency	= SCS Runoff = 100 yrs	Peak discharge Time to peak	= 27.13 cfs = 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 135,324 cuft
Drainage area	= 5.780 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 40.10 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.180 x 98) + (3.600 x 80)] / 5.780

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Post-Development Downstream DA-1

Hydrograph type Storm frequency	= SCS Runoff = 100 yrs	Peak discharge Time to peak	= 24.26 cfs = 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 121,597 cuft
Drainage area	= 5.100 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 40.10 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.320 x 98) + (2.780 x 80)] / 5.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Pre-Development Downstream DA-2

Hydrograph type Storm frequency	= SCS Runoff = 100 yrs	Peak discharge Time to peak	= 56.56 cfs = 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 327,277 cuft
Drainage area	= 14.240 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 49.10 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.930 x 98) + (9.310 x 80)] / 14.240

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 11 / 2 / 2023

Hyd. No. 13

Post-Development Downstream DA-2 (w/out Site)

Hydrograph type	= SCS Runoff	Peak discharge	= 53.02 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 308,108 cuft
Drainage area	= 13.160 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 49.06 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(5.220 x 98) + (7.940 x 80)] / 13.160

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Post-Development Downstream DA-2

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 11 / 2 / 2023

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)			(FHA)
(Yrs)	В	D	E	(N/A)
1	65.1130	13.0000	0.8983	
2	71.2172	12.9000	0.8806	
3	0.0000	0.0000	0.0000	
5	68.0041	12.5000	0.8280	
10	71.4662	12.4000	0.8035	
25	63.2015	11.1000	0.7421	
50	56.4878	9.9000	0.6912	
100	54.2579	9.3000	0.6606	
1			1	1

File name: OUT-1502 IDF.IDF

Intensity = B / (Tc + D)^E

Return Period (Yrs)	Intensity Values (in/hr)											
	5 min	10	15	20	25	30	35	40	45	50	55	60
1	4.85	3.89	3.26	2.82	2.48	2.22	2.01	1.84	1.70	1.58	1.47	1.38
2	5.61	4.52	3.80	3.28	2.90	2.60	2.36	2.16	2.00	1.86	1.74	1.63
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.36	5.16	4.37	3.81	3.38	3.05	2.78	2.56	2.37	2.22	2.08	1.96
10	7.20	5.88	5.00	4.37	3.89	3.52	3.22	2.97	2.76	2.58	2.43	2.29
25	8.04	6.58	5.62	4.93	4.42	4.01	3.68	3.41	3.18	2.99	2.82	2.67
50	8.73	7.15	6.12	5.40	4.85	4.42	4.07	3.79	3.55	3.34	3.16	3.00
100	9.36	7.68	6.59	5.83	5.25	4.80	4.43	4.13	3.88	3.66	3.47	3.30
100	9.36	7.68	6.59	5.83	5.25	4.80	4.43	4.13	3.88	3.66	3.4	7

Tc = time in minutes. Values may exceed 60.

: X:\OUT -	Cookout\1500 Sites\1	502 - Zebulon,	NC\Engineering\	Stormwater\Stormwat	er Model\OUT-1502 Evt Mgr.p	оср

	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.85	3.46	0.00	4.38	5.14	6.20	7.07	8.00
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

11/3/2023

WATER QUALITY VOLUME

WQv = 3630 * Rd * Rv * A

where, WQv = Water quality volume (acre-feet) Rv = 0.05 + 0.009 x I I = Percent impervious A = Area (acres) P = Rainfall (inches) Total area to UG Detention, A = 1.22 acres

Water quality volume, WQv = 75% WQv =	3488 2616	cf cf
Rainfall for WQ storm, Rd =	1.00	inches
Runoff coefficient, Rv =	0.79	
Percent impervious, I =	81.97	%
Impervious area to UG Detention =	1.00	acres

WATER QUALITY VOLUME DRAWDOWN

T = WQv / Q / 86400 (sec/day)

where,

T = Drawdown Time (days) WQv = Water Quality Volume (cf) Q = Cd * A * (2gh)^(1/2)

Diameter of orifice, D =	1.33	inches
Cross sectional area of orifice, A =	0.002	sf
Orifice invert elevation =	328.70	ft
WQv elevation =	331.08	ft
Orifice coefficient =	0.61	
Driving head on orifice @WQv, h =	2.38	
Orifice flowrate, Q =	0.0061	
Drawdown time, T =	4.99	days
	119.70	hours

Determining Number of Cartridges for Volume-Based Design in NC

Design Engineer: Date	<mark>lrs</mark> 10/30/2023	Blue Cells = Input Black Cells = Calculation
Site Information		
Project Name	Cook Out REV1	
Project State	NC	
Project Location	Zebulon	
Drainage Area, Ad Impervious Area, Ai	1.22 ac 1.00 ac	
Pervious Area, Ap	0.22	
% Impervious	82%	
Runoff Coefficient, Rv	0.79	=0.05+0.9*(Ai/Ad)
Water Quality Volume Calculations		
Design storm rainfall depth, Rd	1.0 in	
Water quality volume, WQV	3488.4 ft ³	=Ad*Rv*Rd*(43560/12)
Storage Component Calculations		
Capture 75% of WQV	2616.3 ft ³	=0.75*WQV
Pretreatment credit (estimated or calculated), %pre	30%	
Mass loading calculations		
Mean Annual Rainfall, P	45 in	
Agency required % removal	85%	
Percent Runoff Capture (% capture)	90%	
Mean Annual Runoff,Vt	142,286 ^{ft³}	=P*Ad*Rv*(43560/12)*%capture
Event Mean Concentration of Pollutant, EMC	70.0 mg/l	(Suggestion: Use 60 for residential, 70 for Commercial, 100 for Industrial)
Annual Mass Load, M _{total}	621.41 lbs	=EMC*Vt*(28.3)*(0.000001)*(2.2046)
Filter System		
Filtration brand	StormFilter	
Cartridge height	18 in	
Cartridge Quantity Calculation		
Mass removed by pretreatment system, M _{pre}	186 lbs	=Mtotal * %removal
Mass load to filters after pretreatment, M _{pass1}	435 lbs	=Mtotal - Mpre
Estimate the required filter efficiency, E _{filter}	79%	=1+(%removal - 1)/(1 - %pre)
Mass to be captured by filters, M _{filter}	342 lbs	=Mpass1 * Efilter
Maximum Cartridge Flow rate, Q _{cart}	7.5 gpm	=q * (7.5 ft2/cartridge)
Mass load per cartridge, M _{cart} (lbs)	36 lbs	=lookup mass load per cartridge
Number of Cartridges required, N _{mass}	10	=ROUNDUP(Mfilter/Mcart,0)
Maximum Treatment Capacity	0.17	=Nmass*(Qcart/449)
SUMMARY		
Maximum Treatment Flow Rate, cfs	0.17	Target Pollutant(s): TSS, N&P
Cartridge Flow Rate, gpm	7.5	Media: Phosphosorb
Number of Cartridges	10 06" MH	
Stormfilter Size	96'' MH	

2022-10-20_County Response to Comments Letter

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 3 2023

Flume #1

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.28
Bottom Length (ft)	= 3.00	Q (cfs)	= 1.510
Total Depth (ft)	= 0.50	Area (sqft)	= 0.85
		Velocity (ft/s)	= 1.77
Calculations		Top Width (ft)	= 3.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 1.51		

DESIGN OF RIPRAP OUTLET PROTECTION

New York DOT Dissipator Method For Use in Defined Channel

(Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.)

Guide to Color Key:	User Input Data	Calculated Value
		_
Designed By:	JAS	Date:
Checked By:		Date:
Company:	Sambatek	
Project Name:	Cookout Zebulon	
Project No.:	OUT-1502	
Site Location (City/Town)	Zebulon	

Flume #1

Estimation of Stone Size and Dimensions For Culvert Aprons

Step 1) Compute flow velocity Vo at culvert or paved channel outlet.

Step 2) For pipe culverts D_o is diameter.

Culvert Id.

For pipe arch, arch and box culverts, and paved channel outlets, $D_0 = A_0$ where A. = cross-sectional area of flow at outlet.

For multiple culverts, use $D_0 = 1.25 \text{ x } D_0$ of single culvert.

Velocity (ft/s)	1.77
Opening type	Paved Channel Outlet
Single or multiple openings?	Single
Outlet pipe diameter, D_o (ft)	0.85

NOTE 1: If opening type is anything other than "Pipe Culvert", $D_o=A_o$ (Cross-sectional area of flow at outlet).

NOTE 2: If multiple openings, D_0 =1.25 x D_0 of single culvert.

Step 3) For apron grades of 10% or steeper, use recommendations For next higher zone. (Zones 1 through 6).

Zone	1	Figure 8.06c		
Will apron have >/=10% grade?	No			
NOTE: For apron slopes equal to or greater than 10%, use next higher Zone in Figure 8.06d to determine apron length.				
Apron length (ft)	10	Figure 8.06d		

Determination of Stone Sizes For Dumped Stone Channel Linings and Revetments

Step 1. Use figure 8.06. e to determine maximum stone size (e.g. for 12 Fps = 20" or 550 lbs.

Max. stone size (in.)

5 Figure 8.06e

Step 2. Use figure 8.06. to determine acceptable size range for stone (for 12 FPS it is 125-500 lbs. for 75% of stone, and the maximum and minimum range in weight should be 25-500 lbs.).

NOTE: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness:

	Diameter	Manning's	Min. th	nickness
	(inches)	"n"	of lining	(inches)
Fine	3	0.031	9	12
Light	6	0.035	12	18
Medium	13	0.040	18	24
Heavy	23	0.044	30	36
			(Channels)	(Dissapators)

Min. & max range of stones (lbs)	5-25	Figure 8.05f
Weight range of 75% of stones (lbs)	5-25	Figure 8.05f

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 3 2023

Flume #2

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.10
Bottom Length (ft)	= 3.00	Q (cfs)	= 0.340
Total Depth (ft)	= 0.50	Area (sqft)	= 0.31
		Velocity (ft/s)	= 1.08
Calculations		Top Width (ft)	= 3.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 0.34		

DESIGN OF RIPRAP OUTLET PROTECTION

New York DOT Dissipator Method For Use in Defined Channel

(Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.)

Guide to Color Key:	User Input Data	Calculated Value
		_
Designed By:	JAS	Date:
Checked By:		Date:
Company:	Sambatek	
Project Name:	Cookout Zebulon	
Project No.:	OUT-1502	
Site Location (City/Town)	Zebulon	

Flume #1

Estimation of Stone Size and Dimensions For Culvert Aprons

Step 1) Compute flow velocity Vo at culvert or paved channel outlet.

Step 2) For pipe culverts D_o is diameter.

Culvert Id.

For pipe arch, arch and box culverts, and paved channel outlets, $D_0 = A_0$ where A. = cross-sectional area of flow at outlet.

For multiple culverts, use $D_0 = 1.25 \text{ x } D_0$ of single culvert.

Velocity (ft/s)	1.08
Opening type	Paved Channel Outlet
Single or multiple openings?	Single
Outlet pipe diameter, D_o (ft)	0.31

NOTE 1: If opening type is anything other than "Pipe Culvert", $D_o=A_o$ (Cross-sectional area of flow at outlet).

NOTE 2: If multiple openings, D_0 =1.25 x D_0 of single culvert.

Step 3) For apron grades of 10% or steeper, use recommendations For next higher zone. (Zones 1 through 6).

Zone	1	Figure 8.06c
Will apron have >/=10% grade?	No	
NOTE: For apron slopes equal to or greater determine apron length.	than 10%, use next higher Z	one in Figure 8.06d to
Apron length (ft)	10	Figure 8.06d

Determination of Stone Sizes For Dumped Stone Channel Linings and Revetments

Step 1. Use figure 8.06. e to determine maximum stone size (e.g. for 12 Fps = 20" or 550 lbs.

Max. stone size (in.)

5 Figure 8.06e

Step 2. Use figure 8.06. to determine acceptable size range for stone (for 12 FPS it is 125-500 lbs. for 75% of stone, and the maximum and minimum range in weight should be 25-500 lbs.).

NOTE: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness:

	Diameter	Manning's	Min. th	nickness
	(inches)	"n"	of lining	(inches)
Fine	3	0.031	9	12
Light	6	0.035	12	18
Medium	13	0.040	18	24
Heavy	23	0.044	30	36
			(Channels)	(Dissapators)

Min. & max range of stones (lbs)	5-25	Figure 8.05f
Weight range of 75% of stones (lbs)	5-25	Figure 8.05f

APPENDIX D

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

Storm Sewer Inventory Report

	Aligni	nent			Flow	/ Data					Physical	Data				Line ID		
Dnstr Line No.	Length	angle	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)			
End	5.000	164.292	Comb	0.00	0.03	0.95	5.0	326.55	3.00	326.70	24	Cir	0.013	1.50	331.15	P-1		
1	100.000	90.000	Comb	0.00	0.40	0.95	5.0	326.90	0.50	327.40	18	Cir	0.013	1.00	331.90	P-2		
1	27.000	0.000	Comb	0.00	0.03	0.95	5.0	326.90	0.93	327.15	18	Cir	0.013	0.50	331.15	P-3		
3	20.000	0.000	Hdwl	5.24	1.25	0.55	0.0	327.25	1.25	327.50	24	Cir	0.013	1.00	330.00	P-4		
End	11.000	135.000	Comb	0.00	0.02	0.95	5.0	327.00	0.91	327.10	18	Cir	0.013	0.83	330.50	P-5		
5	27.000	30.000	Comb	0.00	0.02	0.95	5.0	327.10	0.56	327.25	18	Cir	0.013	1.00	330.50	P-6		
502 Storm	Sewer Mo	del									Number	of lines: 6			Date: 1	0/18/2023		
	Line No.	Dnstr Line No. Line Length (ft) End 5.000 1 100.000 1 27.000 3 20.000 End 11.000 5 27.000	Line No. Length (ft) angle (deg) End 5.000 164.292 1 100.000 90.000 1 27.000 0.000 3 20.000 135.000	Dnstr Line No.Line Length (ft)Defl angle (deg)Junc TypeEnd5.000164.292Comb1100.00090.000Comb127.0000.000HdwlSame 527.00030.000CombSame Anshin 	Dnstr Ine No.Line (ft)Defl angle (deg)Junc TypeKnown Q (cfs)End5.000164.292Comb0.001100.00090.000Comb0.00127.0000.000Hdwl5.24End11.000135.000Comb0.00527.00030.000Comb0.00527.00030.000Comb0.00	Dnstr Line No.Line thength (ft)Defi angle (deg)June TypeKnown Q (cfs)Drng Area (ac)End5.000164.292Comb0.000.031100.00090.000Comb0.000.03127.0000.000Hdwl5.241.25End11.000135.000Comb0.000.02527.00030.000Comb0.000.02527.000if the second secon	Dnstr line No. Line thength (ft) Definding angle (deg) Junc Type Known Q (cfs) Drng Area (ac) Runoff Coeff (off) End 5.000 164.292 Comb 0.00 0.03 0.95 1 100.000 90.000 Comb 0.00 0.40 0.95 1 27.000 0.000 Comb 0.00 0.03 0.95 3 20.000 0.000 Hdwl 5.24 1.25 0.55 End 11.000 135.000 Comb 0.00 0.02 0.95 5 27.000 30.000 Comb 0.00 0.02 0.95	Dnstr No. Line Length (ft) Defl agle (deg) Junc Type Known Q (cfs) Drng Area (ac) Runoff Coeff Inlet Time (min) End 5.000 164.292 Comb 0.00 0.03 0.95 5.0 1 100.000 90.000 Comb 0.00 0.40 0.95 5.0 1 27.000 0.000 Comb 0.00 0.03 0.95 5.0 3 20.000 0.000 Hdwl 5.24 1.25 0.55 0.0 End 11.000 135.000 Comb 0.00 0.02 0.95 5.0 5 27.000 30.000 Comb 0.00 0.02 0.95 5.0	Dastr Line No. Line Length (t) Deff angle (deg) Junc Type Known Q (cfs) Drag Area (ac) Runoff CO ^{ff} Inter Itime Inver EI Dn (t) End 5.000 164.292 Comb 0.00 0.03 0.95 5.0 326.55 1 100.000 90.000 Comb 0.00 0.40 0.95 5.0 326.90 1 27.000 0.000 Comb 0.00 0.33 0.95 5.0 326.90 3 20.000 0.000 Hdwl 5.24 1.25 0.55 0.0 327.00 5 27.000 30.000 Comb 0.00 0.02 0.95 5.0 327.10	Dnstr No. Line (t) Defl angle (deg) Junc Type Known C(fs) Drng Area (ac) Runoff Coff Inlet Time (f) Invert (f) Line Slope (fs) End 5.000 164.292 Comb 0.00 0.03 0.95 5.0 326.55 3.00 1 100.000 90.000 Comb 0.00 0.40 0.95 5.0 326.90 0.50 1 27.000 0.000 Comb 0.00 0.03 0.95 5.0 326.90 0.83 3 20.000 0.000 Hdwl 5.24 1.25 0.55 0.0 327.25 1.25 End 11.000 135.000 Comb 0.00 0.02 0.95 5.0 327.10 0.56 5 27.000 30.000 Comb 0.00 0.02 0.95 5.0 327.10 0.56	Dnstr No. Line (ft) Defl angle (de) Junc Type Known Q (cfs) Drg Area (ec) Runoff CO Inlet Ime (ft) Invert Slope Line El Un (ft) Invert El Up End 5.000 164.292 Comb 0.00 0.03 0.95 5.0 326.55 3.00 326.70 1 100.000 90.000 Comb 0.00 0.40 0.95 5.0 326.90 0.50 327.40 1 27.000 0.000 Comb 0.00 0.03 0.95 5.0 326.90 0.93 327.15 3 20.000 0.000 Hdwl 5.24 1.25 0.55 0.0 327.25 1.25 327.50 End 11.000 135.000 Comb 0.00 0.02 0.95 5.0 327.10 0.56 327.25 5 27.000 30.000 Comb 0.00 0.02 0.95 5.0 327.10 0.56 327.25	Onstr No. Line (ft) Doff angle (deg) Junc Type Known Q (cfs) Drag Area (ac) Runoff Coeff (C) Inlet Intet (ft) Line (ft) Line (ft) Invert (ft) Line (ft) Line (ft)	Destr No. Line (ft) Defl (deg) Junc Type Known (cfs) Dreg (ac) Runoff (C) Intel Time (ft) Invert (E) Line (E) Invert (E) Line (E) Line (E) <th< td=""><td>Destr Inex Line (t9) Defi (t9g) June Type Known C(f) Prag (ac) Runoff (c) Inlet (m)n Line (f) Line (f) Line Size (h) Line Size (n) Line Size (n) Line Size (n) Line (h) Line Size (n) Line (h) Line Size (n) Line (h) Line Size (n) Line (h) Line Size (n) Line Size (n) Line Size (n) Line (h) Line (h) Line (h) Line (h) Line Size (n) Line (h) Line Size (n) Line (h) <th line<br="">(h) <th line<="" th=""> Line</th></th></td><td>Distr Line, No. Line Length (n) Deff angle (n) June Type Known Q (cfs) Drng Area (cfs) Runoff (cfs) Invert (ff) Line Slope Invert (ft) Line (ft) Line (ft)</td><td>Distr Line Length Line (teg) Line Line (teg) Line (</td></th<>	Destr Inex Line (t9) Defi (t9g) June Type Known C(f) Prag (ac) Runoff (c) Inlet (m)n Line (f) Line (f) Line Size (h) Line Size (n) Line Size (n) Line Size (n) Line (h) Line Size (n) Line (h) Line Size (n) Line (h) Line Size (n) Line (h) Line Size (n) Line Size (n) Line Size (n) Line (h) Line (h) Line (h) Line (h) Line Size (n) Line (h) Line Size (n) Line (h) Line (h) <th line<br="">(h) <th line<="" th=""> Line</th></th>	(h) <th line<="" th=""> Line</th>	Line	Distr Line, No. Line Length (n) Deff angle (n) June Type Known Q (cfs) Drng Area (cfs) Runoff (cfs) Invert (ff) Line Slope Invert (ft) Line (ft) Line (ft)	Distr Line Length Line (teg) Line Line (teg) Line (

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Out	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	CB-2	Combination	331.15	Rect	3.00	2.33	24	Cir	326.70	18 18	Cir Cir	326.90 326.90
2	CB-1	Combination	331.90	Rect	3.00	2.33	18	Cir	327.40			
3	CB-3	Combination	331.15	Rect	3.00	2.33	18	Cir	327.15	24	Cir	327.25
4	FES-16	OpenHeadwall	330.00	n/a	n/a	n/a	24	Cir	327.50			
5	CB-4	Combination	330.50	Rect	3.00	2.33	18	Cir	327.10	18	Cir	327.10
6	CB-5	Combination	330.50	Rect	3.00	2.33	18	Cir	327.25			
OUT-15	02 Storm Sewer Model		1	<u> </u>		1	N	umber of Struct	ures: 6	Run	Date: 10/18/20)23

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	P-1	9.74	24	Cir	5.000	326.55	326.70	3.000	327.98	327.81	0.68	327.81	End	Combination
2	P-2	1.52	18	Cir	100.000	326.90	327.40	0.500	327.81	327.86	n/a	327.86	1	Combination
3	P-3	8.10	18	Cir	27.000	326.90	327.15	0.926	327.92	328.25	0.26	328.25	1	Combination
4	P-4	5.24	24	Cir	20.000	327.25	327.50	1.250	328.25	328.31	n/a	328.31 j	3	OpenHeadwall
5	P-5	0.15	18	Cir	327.10	0.909	327.17	327.24	n/a	327.24 j	End	Combination		
6	P-6	0.08	18	0.556	327.24	327.35	0.03	327.39	5	Combination				
	502 Storm Sewer Model								Number o	f lines: 6		Run I	Date: 10/18	3/2023
NOTES	: Return period = 10 Yrs. ; j - Line	contains h	yd. jump.											

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb Ir	nlet	Gra	te Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	CB-2	0.11	0.00	0.11	0.00	Comb	4.0	3.00	3.00	2.00	3.00	Sag	2.00	0.050	0.020	0.000	0.07	1.44	0.07	1.44	0.0	Off
2	CB-1	1.52	0.00	1.52	0.00	Comb	4.0	3.00	3.00	2.00	3.00	Sag	2.00	0.050	0.020	0.000	0.18	5.88	0.18	5.88	0.0	Off
3	CB-3	0.11	0.00	0.11	0.00	Comb	4.0	3.00	3.00	2.00	3.00	Sag	2.00	0.050	0.020	0.000	0.07	1.44	0.07	1.44	0.0	Off
4	FES-16	5.24*	0.00	5.24	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
5	CB-4	0.08	0.00	0.08	0.00	Comb	4.0	3.00	0.00	2.00	3.00	0.020	2.00	0.050	0.020	0.013	0.06	1.26	0.00	0.00	0.0	Off
6	CB-5	0.08	0.00	0.08	0.00	Comb	4.0	3.00	0.00	2.00	3.00	0.020	2.00	0.050	0.020	0.013	0.06	1.26	0.00	0.00	0.0	Off
OUT-1	1502 Storm Sewer N	lodel												Number	of lines:	6		R	un Date:	10/18/20	23	
NOTE	S: Inlet N-Values = (0.016; Inte	ensity = 4	l.00 / (In	let time -	+ 0.00) ^	0.00; F	eturn pe	riod = 10) Yrs. ; [•]	* Indicate	es Know	n Q adde	ed.All cu	rb inlets	are Inclii	ned throa	at.				

Storm Sewer Inlet Time Tabulation

Line	Line ID	Тс		She	et Flow			Sha	allow Co	oncentrat	ed Flow				Cha	annel Flo	w			Total
No.		Method	n- Value	flow Length (ft)	2-yr 24h P (in)	Land Slope (%)	Travel Time (min)	flow Length (ft)	Water Slope (%)	Surf Descr	Ave Vel (ft/s)	Travel Time (min)	X-sec Area (sqft)	Wetted Perim (ft)	Chan Slope (%)	n- Value	Vel	flow Length (ft)	Travel Time (min)	Travel Time (min)
1	P-1	User																		5.00
2	P-2	User																		5.00
3	P-3	User																		5.00
4	P-4	User																		0.00
5	P-5	User																		5.00
6	P-6	User																		5.00
OUT-	1502 Storm Sewer I	l Viodel	1		M	i lin. Tc us	sed for inte	ensity calcu	l ulations =	= 5 min		N	lumber of	lines: 6			Date:	10/18/2023	<u> </u>	1

Hydraulic Grade Line Computations

_ine	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec		JL	Minor
	<i>и</i> ,		Invert elev	HGL elev	Depth				EGL elev	Sf		Invert elev	HGL elev	Depth			Vel head	EGL elev	Sf	Sf	Enrgy loss	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
1	24	9.74	326.55	327.98	1.43	1.80	4.05	0.45	328.44	0.000	5.000	326.70	327.81	1.11**	1.80	5.41	0.45	328.27	0.000	0.000	n/a	1.50	0.68
2	18	1.52	326.90	327.81	0.91		1.35	0.17	327.98	0.000		0327.40	327.86			3.28	0.17	328.03		0.000		1.00	n/a
3	18	8.10	326.90	327.92	1.02*		6.36	0.53	328.44			327.15	328.25			5.83	0.53	328.78		0.000		0.50	0.26
4	24	5.24	327.25	328.25	1.00		3.33	0.30	328.56	0.000	20.000	00 327.50 328.31 j 0.81** 1.19 4.42 0.30 328.61						0.000	0.000	n/a	1.00	0.30	
5	18	0.15	327.00	327.17	0.17		1.38	0.05	327.22			0 327.10 327.24 j 0.14** 0.09 1.77 0.05 327.29						0.000	0.000	n/a	0.83	n/a	
6	18	0.08	327.10	327.24	0.14	0.05	0.89	0.01	327.26	0.147	27.000							0.596	0.371	0.100	1.00	0.03	
ουτ	-1502 Sto	orm Sew	ver Model											N	umber c	f lines: 6	5		Rur	Date: 1	10/18/202	23	

Inlet Section (Line 2 - Combination Inlet) - CB-1

Inlet Section (Line 1 - Combination Inlet) - CB-2

All di	mensions	in feet			Line 1 -	Combin	ation (Sv	weeper)	Inlet in §	Gag - CB-	2					
					.07	2	0									
			Q			Inlet			Gut	ter		De	epth	Spre	ad	Вур
Line #	Catch (cfs)	Carry (cfs)	Capt (cfs)	Byp (cfs)	Length (ft)	Depr (in)	Throat (in)	Width (ft)	Slope (ft/ft)	Sw (ft/ft)	Sx (ft/ft)	Gutter (ft)	Inlet (ft)	Gutter (ft)	Inlet (ft)	Line (ft)
1	0.11	0.00	0.11	0.00	Sweep	0.0	4.0	2.00	Sag	0.050	0.020	0.07	1.44	n/a	n/a	Sag
OUT	-1502 Stor	m Sewer I	Model							No.	Lines: 6			Run Date:	10/18/2	2023 Storm Sewers

Storm Sewers

Inlet Section (Line 3 - Combination Inlet) - CB-3

Inlet Section (Line 5 - Combination Inlet) - CB-4

Storm Sewers

Inlet Section (Line 6 - Combination Inlet) - CB-5

Storm Sewers

APPENDIX E

 $\langle S \rangle$

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

STATE OF NORTH CAROLINA WAKE COUNTY

STORMWATER AGREEMENT

THIS AGREEMENT, made and entered into this the _____ day of _____, by and between Wake County, hereinafter referred to as County, and _____, hereinafter referred to as Owner;

WITNESSETH

THAT WHEREAS, Owner is this day accepting responsibility for the stormwater device(s) installed on that certain real property known as ________, Permit Number _______ as shown on the plat thereof recorded in the Book of Maps _______, Page ______, Wake County Registry; and

WHEREAS, as a part of the construction of the residence/development the Wake County Environmental Services – Watershed Management Section required that a stormwater device(s) be constructed; and

WHEREAS, the Owner accepts responsibility for the maintenance of the stormwater device(s) as prescribed in the Maintenance Agreement signed and notarized, dated _____, 20____; and

WHEREAS, the Owner grants access to Wake County to inspect the stormwater device(s); and

WHEREAS, the Owner understands that this Agreement shall endure to the benefit of his successors in title, whomsoever they may be in the future.

NOW, THEREFORE, it is understood and agreed by and between the parties:

- 1. The maintenance of the stormwater device(s) shall be the sole responsibility of the Owner.
- 2. The responsibility for the maintenance of the stormwater device shall pass in the chain of title to the Owner's successor in interest.
- 3. Access is granted to Wake County to inspect the stormwater device(s).
- 4. Annually, the Owner shall provide an inspection report by June 30th.

The report should be uploaded to the Permit Portal at Wakegov.com. You will need to Register in the Permit Portal and contact Watershed Management at watershedmanagement@wakegov.com to request access to your permit case files. (Subject Line: Add Case Contact)

Owner: _____

Date:

I, _____ THE UNDERSIGNED notary Public of the County and State aforesaid, certify that ______ personally appeared before me this day and acknowledged the due execution of the foregoing instrument.

WITNESS my hand and notarial seal, this the _____ day of _____, ____.

Notary Public

My Comm. Exp. _____

After recording return to: Watershed Management Section 336 Fayetteville St. PO Box 550 Raleigh, NC 27602

SITE DATA

NORTH CAROLINA		Designat Information
		Project Information
	Project Name:	OUT-1502 Cookout Zebulon
	Applicant: Applicant Contact Name:	Cook Out Michael Hicks
	Applicant Contact Number:	919.848.6121
	Applicant Contact Number:	mhicks@sambatek.com
	Municipal Jurisdiction (Select from dropdown menu):	Zebulon
	Last Updated:	Wednesday, October 18, 2023
		Site Data:
	Total Site Area (Ac):	1.91
	Existing Lake/Pond Area (Ac):	0.00
	Proposed Disturbed Area (Ac):	2.20
	Impervious Surface Area (acre):	1.13
	Type of Development (Select from Dropdown menu):	Non-Residential
	Percent Built Upon Area (BUA):	59%
	Project Density:	High
	Is the proposed project a site expansion?	No
	Number of Drainage Areas on Site:	1
	1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.85
NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website):	3.46
	10-Year, 24-Hour Storm (inches) (See NOAA Website):	5.14
		Lot Data (if applicable):
	Total Acreage in Lots:	1.91
	Number of Lots:	1
	Average Lot Size (SF):	83368.00
	Total Impervious Surface Area on Lots (SF):	48702.00
	Average Impervious Surface Area Per Lot (SF):	48702.00
infrastructure that	at drains to an underground detention system. Water quality trea	u for commerical usage. The post-construction stormwater improvements include stormwater runoff collection atment is completed using a primary SCM (Contech Filterra) and water quantity control is achieved via the stains design storm runoff and releases it at the edge of the property at or below pre-development flow rates.

OUT-1502 Cookout Zebulon

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE		NT	PC	OST-DEV	ELOPME	NT
Drainage Area (Acres)=			91				91	
Site Acreage within Drainage=		1.	91			1.	91	
One-year, 24-hour rainfall (in)=				2.	85			
Two-year, 24-hour rainfall (in)=				3.	46			
Ten-year, 24-hour storm (in)=				5.	14			
Total Lake/Pond Area (Acres)=		0.	00			0.	00	
Lake/Pond Area not in the Tc flow path (Acres)=		0.	00			0.	00	
Site Land Use (acres):	А	В	С	D	А	В	С	D
Pasture								
Woods, Poor Condition								
Woods, Fair Condition								
Woods, Good Condition								
Open Space, Poor Condition								
Open Space, Fair condition								
Open Space, Good Condition				1.91				0.78
Reforestation (in dedicated OS)								
Connected Impervious								1.13
Disconnected Impervious								
SITE FLOW	PR	E-DEVEL	OPMEN	т т _с	POS	T-DEVE	LOPMEN	IT Tc
Sheet Flow								
Length (ft)=		100	0.00			208	3.00	
Slope (ft/ft)=		0.0)30			0.0	026	
Surface Cover:		Gr	ass			Gr	ass	
n-value=		0.2	240			0.2	240	
T _t (hrs)=		0.2	214			0.4	408	
Shallow Flow								
Length (ft)=		160).00			105	5.00	
Slope (ft/ft)=		0.0)12			0.0	020	
Surface Cover:		Unp	aved			Unp	aved	
Average Velocity (ft/sec)=		1.	77			2.	28	
T _t (hrs)=		0.	03			0.	.01	
Channel Flow 1								
Length (ft)=								
Slope (ft/ft)=								
Cross Sectional Flow Area (ft ²)=								
Wetted Perimeter (ft)=								
Channel Lining:								
n-value=								
Hydraulic Radius (ft)=								
Average Velocity (ft/sec)=								
T _t (hrs)=								
					-			

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.24	0.10
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
		FOST-DEVELOFINIENT
Composite Curve Number=	80	91
Composite Curve Number= Disconnected Impervious Adjustment		
· · ·		
Disconnected Impervious Adjustment		91
Disconnected Impervious Adjustment Disconnected impervious area (acre) =	80	91
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	80 9	91
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	80 9	91
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	80 9	91
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	80 9 4,0	91 1 138
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	80 9 4,0 1.14 7,895	91 1 138 1.90
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	80 9 4,0 1.14 7,895	91 1 038 1.90 13,185
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	80 9 4,0 1.14 7,895 5,2	91 1 138 1.90 13,185 290
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} =	80 9 4,0 1.14 7,895 5,2	91 1 138 1.90 13,185 290
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	80 9 4,0 1.14 7,895 5,2 2.510	91 1 1 1 1.90 13,185 290 5.732
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	80 9 4,0 1.14 7,895 5,2 2.510 1.60	91 1 1 1.90 13,185 290 5.732 2.47
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	80 9 4,0 1.14 7,895 5,2 2.510 1.60 11,126	91 1 1 1 1 1 1 1 1 1 1 1 1 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{2-year} =	80 9 4,0 1.14 7,895 5,2 2.510 1.60 11,126	91 1 1 1 1 1 1 1 1 1 1 1 1 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	80 9 4,0 1.14 7,895 5,2 2.510 1.60 11,126 3.538	91 1 1 1 1 1 1 1 1 1 1 1 1 1

DA SITE SUMMARY STORMWATER PRE-POST CALCULATIONS

		SITE	SUMMAR	(
DRAINAGE AREA SUMMARIES		5112 .								
DRAINAGE AREA SUMMARIES DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
			(1-year, 24-			Dirio	Bru	Ditto	5/10	Divite
Runoff (in) = Q _{pre,1-year} =	1.14									
Peak Flow (cfs)=Q _{1-year} =	2.510									
	Post-De	velopment	(1-year, 24	-hour stor	m)					
Proposed Impervious Surface (acre) =	1.13									
Runoff (in)=Q _{1-year} =	1.90									
Peak Flow (cfs)=Q _{1-year} =	5.732									
Increase in volume per DA (ft ³)_1-yr storm=	5,290									
Minimum Volume to be Managed for DA HIGH DENSITY REQUIREMENT = (ft ³) =	4,038									
TARGET CURVE NUMBER (TCN)										
		S	ite Data							
		SITE \SOIL	COMPOSI	TION						
HYDROLOGIC SOIL GRO	UP			Site	Area		%		Target CN	<u>l</u>
A				0.	00	C	0%		N/A	
В				0.	00	C)%		N/A	
C				0.	00	C)%		N/A	
D				1.	91	10	00%		N/A	
		Тс	otal Site Area	a (acres) =			1.	.91		
Percent E	BUA (Includ	es Existing	Lakes/Pond	Areas) =			59	9%		
				Density =			Н	igh		
		Target C	Curve Numbe	. ,				/A		
				sted (1-year)=				91		
Minimum Volume to be Mana							N	I/A		
		Site Nitrog	en Loading TN export	Data				1		
HSG			coefficient (lbs/ac/yr)			Site Acreage			N Export	
Pasture			1.2			0.00			0.00	
Woods, Poor Condition			1.6			0.00		0.00		
Woods, Fair Condition			1.2			0.00		0.00		
Woods, Good Condition			0.8			0.00			0.00	
Open Space, Poor Condition			1.0			0.00			0.00	
Open Space, Fair Condition			0.8			0.00			0.00	
Open Space, Good Condition			0.6			0.78			0.47	
Reforestation (in dedicated OS)			0.6			0.00			0.00	
Impervious			21.2			1.13			23.96	
SITE NITROGEN LOADING RATE	(lbs/ac/yr)=					12.79				
Nitrogen Lo	ad (lbs/yr)=					24.42				
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_We	ndell Only=					17.55				
5	Site Nitroge	en Loading	Data For E	xpansions	s Only					
			Existing					New		
Impervious(acres)=			NA					NA		
"Expansion Area" (acres=)						r				
Nitrogen Load (lbs/yr)=			NA					NA		
SITE NITROGEN LOADING RATE (lbs/ac/yr)=			NA					NA		
Total Site loading rate (lbs/ac/yr)										
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)=					NA	A				

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA1 Site Acreage=				1.91							
DA1 Off-Site Acreage=											
Total Required Storage Volume for Site				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA1											
1" Rainfall for High Density (ft ³)=		r		4,03	8						
Will site use underground detention/cistern?	Yes	Enter %	of the year	water will be reused=		0%				nation/details ate water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	HSG		DA1(a) Ac) Off-site	Sub-E (A Site	DA1(b) (c) Off-site		DA1(c) Ac) Off-site		DA1(d) (c) Off-site		DA1(e) Ac) Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition		0.22		0.56							
Reforestation (in dedicated OS)											
Impervious		1.00		0.13							
Sub-DA1(a) BMP(s)		и Г			1			1	1	1	1
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that w wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
Underground Chambers w/ StormFilter	Bioretention with IWS							40%	21.33	8.53	
@ 85% TSS & 50% Nitrogen removal								0%	12.80	0.00	
			2,308			3,065		0%	12.80	0.00	
								0%	12.80	0.00	
								0%	12.80	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):					12	.80				
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):				T			1	I	T	I
						Provided					Drawdown
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			olume that w wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Time (hours)
Device Name (As Shown on Plan) BYPASS	Device Type					olume that w wdown 2-5 c		Removal	Nitrogen	Removed	Time
· ·	Device Type					olume that w wdown 2-5 c		Removal Efficiency	Nitrogen (Ibs)	Removed (lbs)	Time
· ·	Device Type					olume that w wdown 2-5 c		Removal Efficiency 0%	Nitrogen (Ibs) 3.09	Removed (lbs) 0.00	Time
· ·	Device Type		or Sub-DA (fi			olume that v wdown 2-5 c (ft ³)		Removal Efficiency 0%	Nitrogen (Ibs) 3.09 3.09	Removed (lbs) 0.00 0.00	Time
· ·	Device Type		or Sub-DA (fi			olume that v wdown 2-5 c (ft ³)		Removal Efficiency 0% 0%	Nitrogen (lbs) 3.09 3.09 3.09	Removed (lbs) 0.00 0.00 0.00	Time
BYPASS	Device Type		or Sub-DA (fi			olume that v wdown 2-5 c (ft ³)		Removal Efficiency 0% 0% 0%	Nitrogen (lbs) 3.09 3.09 3.09 3.09	Removed (lbs) 0.00 0.00 0.00 0.00	Time
BYPASS			or Sub-DA (fi			olume that v wdown 2-5 c (ft ³)	<u>lays</u>	Removal Efficiency 0% 0% 0%	Nitrogen (lbs) 3.09 3.09 3.09 3.09	Removed (lbs) 0.00 0.00 0.00 0.00	Time
BYPASS Tot Sub-DA1 (c) BMP(s)			or Sub-DA (fi			olume that v wdown 2-5 c (ft ³)	<u>lays</u>	Removal Efficiency 0% 0% 0%	Nitrogen (lbs) 3.09 3.09 3.09 3.09	Removed (lbs) 0.00 0.00 0.00 0.00	Time
BYPASS Tot Sub-DA1 (c) BMP(s)	al Nitrogen remaining leaving the subbasin (lbs):	fc	or Sub-DA (fi	Jume	dra	olume that v wdown 2-5 c (ft ³)	09 vill	Removal Efficiency 0% 0% 0%	Nitrogen (lbs) 3.09 3.09 3.09 3.09	Removed (lbs) 0.00 0.00 0.00 0.00	Time
BYPASS Tot Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(is), ne nitrogen leaving the most upstream subbasin(ibs):	fc	279 279	Jume	dra	olume that v wdown 2-5 c (ft ³) 0 3. Provided olume that v wdown 2-5 c	09 vill	Removal Efficiency 0% 0% 0% 0% 0%	Nitrogen (lbs) 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 Nutrogen	Removed (lbs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nitrogen Removed	Time (hours)
BYPASS Tot Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(is), ne nitrogen leaving the most upstream subbasin(ibs):	fc	279 279	Jume	dra	olume that v wdown 2-5 c (ft ³) 0 3. Provided olume that v wdown 2-5 c	09 01	Removal Efficiency 0% 0% 0% 0% 0%	Nitrogen ((bs) 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 (b)	Removed (lbs) 0.00 0.00 0.00 0.00 0.00 Nitrogen Removed (lbs)	Time (hours)
BYPASS Tot Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(is), ne nitrogen leaving the most upstream subbasin(ibs):	fc	279 279	Jume	dra	olume that v wdown 2-5 c (ft ³) 0 3. Provided olume that v wdown 2-5 c	09 01	Removal Efficiency 0% 0% 0% 0% 0% 0%	Nitrogen (lbs) 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 0.00	Removed (lbs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Time (hours)
BYPASS Tot Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(is), ne nitrogen leaving the most upstream subbasin(ibs):	fc	279 279	Jume	dra	olume that v wdown 2-5 c (ft ³) 0 3. Provided olume that v wdown 2-5 c	09 01	Removal Efficiency 0% 0% 0% 0% 0% 0%	Nitrogen ((bs) 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09 0.00 0.00	Removed (lbs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Time (hours)

DRAINAGE AREA 1 BMP CALCULATIONS

NORTH CAROLINA							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	50
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	1 BMP SUMMARY					
	Total Volume Treated (ft ³)=		3,065				
	Nitrogen Mitigated(Ibs)=		8.53				
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³)(1-year)=		10,120				
	Post BMP Runoff (inches) = Q*(1-year)=		1.46				
	Post BMP CN _(1-year) =		84				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		1.708				
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =		14,064				
	Post BMP Runoff (inches) = Q* _(2-year) =		2.03				
	Post BMP CN _(2-year) =		85				
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		2.952				
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =		25,227				
	Post BMP Runoff (inches) = Q* _(10-year) =		3.64				
	Post BMP CN(10-year)=		98				
	Post BMP Peak Discharge (cfs)= Q _(10-year) =		5.315				

DA SITE SUMMARY BMP CALCULATIONS

	BM	IP SUMM	IARY							
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-	Developm	ent (1-yea	r, 24-hour s	storm)						
Runoff (in)=Q* _{1-year} =	1.14									
Peak Flow (cfs)=Q _{1-year} =	2.510									
Post-Development (1-year, 24-hour storm)										
Target Curve Number (TCN) =					NA	\				
Post BMP Runoff (inches) = Q* _(1-year) =	1.46									
Post BMP Peak Discharge (cfs)= Q _{1-year} =	1.708									
Post BMP CN _(1-year) =					84					
	Post-BN	IP Nitroge	n Loading							
TOTAL SITE NITROGEN MITIGATED (lbs)=					8.5	3				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=					8.3	2				
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					9.0	2				

ſ

LOW IMPACT DEVELOPMENT SUMMARY

DRAINAGE AREA SUMMARIES DRAINAGE AREA:										
DRAINAGE AREA:	I		1	1	1	1	1	1	1	1
	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
			Pre-Develo	opment	1	[1		1
Runoff (in) = Q _{pre_2-year} =	1.60									
Total Runoff Volume (ft ³)=	11,126									
Peak Flow (cfs)=Q _{2-year} =	3.538									
			Post-Devel	opment						
2-year, 24-hour storm (LID)										
Post BMP Runoff (inches) = $Q^*_{(2-year)}$ =	2.03									
Post BMP Peak Discharge (cfs)= Q _(2-year) =	2.952									
Post BMP Volume of Runoff (ft3) _(2-year) =	14,064									
Does Runoff meet LID requirements?	No									
Does Peak Flow meet LID requirements?	Yes									
Does Runoff Volume meet LID requirements?	No									
SITE SUMMARY				1				I		
			Site Da	ata						
Target CN =					N	/A				
Post-Development CN =						5				
Does CN meet LID requirements?					-	-				
Does on meet Lib requirements :			LID CHEC							
escribe in detail how the proposed developmer isturbances in the least environmentally-sensitiv aluable features.										
At least one of the following techniques must be	used to ach Bioretentiol		classificatior	1:						
	Bioretentio	n	classification	1:						
At least one of the following techniques must be	Bioretention On-site infil Iy)	n Itration			sification:					
At least one of the following techniques must be	Bioretention On-site infil Iy) echniques r	n Itration nust be us		ve LID clas		ice, landsca	aping or for	ests		
At least one of the following techniques must be	Bioretention On-site infil ly) Retention c	n Itration nust be us	sed to achiev	ve LID clas ea, includi	ng open spa				ng areas	
Additional LID Techniques (check all that app tt least two (one for Wendell) of the following to	Bioretention On-site infil ly) Retention c Use of perr	n Itration nust be us of 50% of v neable pa	sed to achiev	ve LID clas ea, includi all private c	ng open spa driveways, p	rivate road			ng areas	
At least one of the following techniques must be	Bioretention On-site infil ly) echniques n Retention c Use of perr Installation	n Itration nust be us of 50% of m meable pa of one rai	sed to achiev vegetated ar vement for <u>s</u> n cistern per	ve LID clas ea, includi all private c	ng open spa driveways, p	rivate road			ng areas	
At least one of the following techniques must be	Bioretention On-site infil iy) echniques n Retention c Use of perr Installation	n Itration nust be us of 50% of v meable pa of one rai of vegeta	sed to achiev vegetated ar vement for <u>a</u> n cistern per tive roofs	re LID clas ea, includi all private c lot or thre	ng open spa driveways, p e rain barrel	rivate road	s, sidewalk	s and parkir		by 50 fee
At least one of the following techniques must be	Bioretention On-site infil Iy) achniques n Retention of Use of perr Installation Installation Increasing	n Itration nust be us of 50% of v neable pa of one rai of vegeta all buffers	sed to achiev vegetated ar vement for <u>a</u> n cistern per tive roofs in the Ripar	ve LID class ea, includi all private o lot or thre ian buffer 2	ng open spa driveways, p e rain barrel	rivate road	s, sidewalk	s and parkir		by 50 fee
At least one of the following techniques must be	Bioretention On-site infili iy) echniques n Retention of Use of perr Installation Installation Installation Use of recl	n tration nust be us of 50% of v neable pa of one rai of vegeta all buffers aimed wa	sed to achiev vegetated ar vement for <u>a</u> n cistern per tive roofs	re LID class rea, includi all private of lot or thre ian buffer a ldings	ng open spa driveways, p e rain barrel zone or the l	rivate road	s, sidewalk	s and parkir		by 50 fee

DOWNSTREAM IMPACT ANALYSIS SITE SUMMARY

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development										
Peak Discharge (cfs)=Q _{10-year} =	6.65									
Volume of Runoff (ft ³) _(10-year) =	20,906									
			Post-Devel	opment						
10-year, 24-hour storm (DIA)										
Post BMP Peak Discharge (cfs)= Q _(10-year) =	5.32									
Post BMP Volume of Runoff (ft ³) _(10-year) =	25,227									

CALCULATIONS AND REFERENCE

TARGET CURVE NUMBER

PROJECT DENSITY	Α	В	С	D
Jltra-Low	43	63	76	81
.ow	48	66	78	83
ligh	N/A	N/A	N/A	N/A
	WEIGH	ITED CURVE NUMBER		
RUNOFF CURVE NUMBERS FOR U	RBAN AREAS			
AND USE	Α	В	С	D
Pasture	39	61	74	80
Voods, Poor Condition ¹	45	66	77	83
Voods, Fair Condition ²	36	60	73	79
Voods, Good Condition ³	30	55	70	77
Open Space, Poor Condition ⁴	68	79	86	89
Open Space, Fair Condition ⁵	49	69	79	84
Open Space, Good Condition ⁶	39	61	74	80
Reforestation (in dedicated OS) ⁷	30	55	70	77
mpervious ⁸	98	98	98	98

SCS RUNOFF METHOD

Q*= (P-.2S)²/(P+.8S) Where: Q*= Runoff (in) P= Precipitation (in) S= Potential max retention after runoff begins (in) = (1000/CN)-10

Notes:

Calculations used on Drainage Area Sheets

DISCRETE RUNOFF METHOD (HIGH DENSITY ONLY)

 $\mathsf{Q*}_{\mathsf{High}} = \mathsf{Q*}_{(\mathsf{imp}) \, \mathsf{X}} \, \mathsf{DA}_{(\mathsf{imp})} + \, \mathsf{Q*}_{(\mathsf{pervious})} \, \mathsf{X} \, \, \mathsf{DA}_{(\mathsf{pervious})}$

Q*_(imp)= Runoff from Impervious Area (in)

 $DA_{(imp)}$ = Drainage from impervious area (acre)

 $Q^{*}_{(pervious)}$ = Runoff from pervious area (in)

DA_(pervious)= Drainage from pervious area (acre)

PEAK FLOW

	$\mathbf{Q}_{\mathbf{p}} = \mathbf{q}_{\mathbf{u}} \mathbf{A} \mathbf{m} \mathbf{Q}^* \mathbf{F} \mathbf{p}$	$\log(q_u) = C_0 + C_1 \log(Tc) + C_2 [\log(Tc)]^2$
	Where: Q _n = Peak Discharge (cfs)	Where: $C_{\alpha}, C_1, C_2 = \text{coefficient from Table F-1}$
	q _u = Unit peak discharge (csm/in) <i>TR-55 Appendix F</i>	T_c = time of concentration (hr)
	A _m = Drainage Area (m²)	
	Q* = runoff (inches)	
	F _p = pond adjustment factor	
Limitations:	The watershed must be hydrologically homogeneous	
	The watershed may have only one main stream or, if more than one, the branches mus	t have nearly equal T _c 's.
	The Fp factor can be applied only for ponds or swamps that are not in the T $_{\rm c}$ flow path	
	This method should be used only if the weighted CN is greater than 40.	
	When this method is used to develop estimates of peak discharge for both pre and pos	t development, use the same procedure for estimating Tc.
	T _c values with this method may range from 0.1 to 10 hours.	

				IIM		NCENTRATION	
			T, =	L		T _t =travel time (hr)	
			· -	L 3600V	-	L = flow length (ft)	
						V = average velocity (ft/s)	
						3600 = conversion factor from seconds to	o hours
						secutive flow segments	
			T _c =	$T_1 + T_2 + T_3$	3 +Tm		
						T_c = time of concentration (hr)	
						m = # of flow segments	
Note: Minimal !						SUMU 0	
SHE	ET FLOW (F	OR FLOW I	LESS THA	N 300 FEI	=1)	SHALLO Surface Cover	DW FLOW
т	= 0.0007(=1.)0	.8				Unpaved: $V= 16.1345(s)^{0.5}$	
• 1	$t = \frac{0.0007(nL)^0}{(P_2)^{0.5}s^{0.4}}$	_					
	(. 2)					Paved: V= 20.3282(s) ^{0.6}	
	T _t =travel tir	ne (hr)				V=Average Velocity (ft/s)	
		g's roughness	coefficient (Table 3-1)		s = slope of hydraulic grade lin	ne (watercourse slope, ft/ft)
	L = flow len	gth (ft)		- /		. , , , , ,	• • • •
		. 24-hour rainf				$T_t = L$	
	s = slope of	hydraulic gra	de line (land	slope, ft/ft)		3600V	
						T₁ =travel time (hr)	
						L = flow length (ft)	
						V = average velocity (ft/s)	
						3600 = conversion factor from	a accorda to houro
							I Seconds to hours
	Modified T	able 3-1 for	Stormwate	r Tool			NNEL FLOW
	Modified T	able 3-1 for	Stormwate	er Tool			
SURFACE DE		able 3-1 for	Stormwate	er Tool	n	OPEN CHAI	NNEL FLOW
SURFACE DE ^P aved, Gravel,	SCRIPTION	able 3-1 for	Stormwate	er Tool	n 0.011		NNEL FLOW
	SCRIPTION	able 3-1 for	Stormwate	er Tool		OPEN CHAI	NNEL FLOW
Paved, Gravel,	SCRIPTION	able 3-1 for	Stormwate	er Tool	0.011	OPEN CHAI	NNEL FLOW
Paved, Gravel, Grass	SCRIPTION , or Bare Soil			er Tool	0.011 0.24	OPEN CHAI V= 1.49r ^{2/3} s ^{1/2} n V=Average Velocity (ft/s)	NNEL FLOW
Paved, Gravel, Grass	SCRIPTION , or Bare Soil	TABLE 4-1,	TR-55		0.011 0.24	V=	NNEL FLOW
Paved, Gravel, Grass	SCRIPTION , or Bare Soil		TR-55		0.011 0.24	$V= \underbrace{1.49r^{2/3}s^{1/2}}_{n}$ V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin	NNEL FLOW
Paved, Gravel, Grass	SCRIPTION , or Bare Soil	TABLE 4-1,	TR-55		0.011 0.24	V=	NNEL FLOW
Paved, Gravel, Grass Woods	SCRIPTION , or Bare Soil I _a values	TABLE 4-1, s for runoff c	TR-55 curve numb	ers	0.011 0.24 0.40	$V= \underbrace{1.49r^{2/3}s^{1/2}}_{n}$ V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin	NNEL FLOW
Paved, Gravel, Grass Woods CN	SCRIPTION , or Bare Soil I _a values	TABLE 4-1, s for runoff c CN	TR-55 curve numb	ers CN	0.011 0.24 0.40	$V= \underbrace{1.49r^{2/3}s^{1/2}}_{n}$ V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin	NNEL FLOW '2 ne (channel slope, ft/ft) fficient for open channel flow
Paved, Gravel, Grass Woods CN 40	SCRIPTION , or Bare Soil I _a values I _a (in) 3.000 2.878	TABLE 4-1, s for runoff c CN 60	TR-55 curve numb I _a (in) 1.333	ers <u>CN</u> 80	0.011 0.24 0.40 I _a (in) 0.500 0.469	OPEN CHAI V= 1.49r ^{2/3} s ^{1/2} n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin s = slope of hydraulic grade lin n = Manning's roughness coef r = a	NNEL FLOW
Paved, Gravel, Grass Noods CN 40 41	SCRIPTION , or Bare Soil I _a values I _a (in) 3.000	TABLE 4-1, s for runoff c <u>CN</u> 60 61	TR-55 curve numb 1.333 1.279	ers <u>CN</u> 80 81	0.011 0.24 0.40 I_a (in) 0.500	OPEN CHAI V= 1.49r ^{2/3} s ^{1/2} n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coef	NNEL FLOW ¹² ne (channel slope, ft/ft) fflicient for open channel flow $T_t = ___L__$
Paved, Gravel, Grass Woods CN 40 41 42	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762	TABLE 4-1, s for runoff c <u>CN</u> 60 61 62	TR-55 curve numb 1.333 1.279 1.226	ers <u> CN</u> 80 81 82	0.011 0.24 0.40 I _a (in) 0.500 0.469 0.439 0.410	$V = \underbrace{1.49r^{2/3}s^{1/2}}_{n}$ $V = Average Velocity (ft/s)$ $r = hydraulic radius (ft)$ $s = slope of hydraulic grade lin n = Manning's roughness coef r = \underbrace{a}_{P_w}$	NNEL FLOW ¹² ne (channel slope, ft/ft) fflicient for open channel flow $T_t = ___L__$
Paved, Gravel, Grass Woods CN 40 41 42 43	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651	TABLE 4-1, s for runoff c 60 61 62 63 64	TR-55 curve numb 1.333 1.279 1.226 1.175	ers CN 80 81 82 83	0.011 0.24 0.40 I _a (in) 0.500 0.469 0.439 0.410 0.381	OPEN CHAI V= 1.49r ^{2/3} s ^{1/2} n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin s = slope of hydraulic grade lin n = Manning's roughness coef r = a	NNEL FLOW I2 ine (channel slope, ft/ft) ifficient for open channel flow $T_t = _$ $L_{=}$ 3600V $T_t =$ travel time (hr)
Paved, Gravel, Grass Woods CN 40 41 42 43 44	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545	TABLE 4-1, s for runoff c 60 61 62 63	TR-55 curve numb 1.333 1.279 1.226 1.175 1.125	ers CN 80 81 82 83 84	0.011 0.24 0.40 I _a (in) 0.500 0.469 0.439 0.410	OPEN CHAI $V = 1.49r^{2/3}s^{1/2}$ n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coel r = P_w a = cross sectional flow area (ft2)	NNEL FLOW '2 ne (channel slope, ft/ft) ifficient for open channel flow T _t = <u>L</u> 3600V
Paved, Gravel, Grass Woods CN 40 41 42 43 44 43 44 45 46 47	SCRIPTION , or Bare Soil , values , (in) 3.000 2.878 2.762 2.651 2.545 2.545 2.444 2.348 2.255	TABLE 4-1, s for runoff c 60 61 62 63 64 65 66 67	TR-55 curve numb 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985	ers CN 80 81 82 83 84 85 86 87	0.011 0.24 0.40 1a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.326 0.299	OPEN CHAI $V = 1.49r^{2/3}s^{1/2}$ n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coel r = P_w a = cross sectional flow area (ft2)	NNEL FLOW /2 ine (channel slope, ft/ft) ifficient for open channel flow $T_t = ____$ 3600V $T_t =$ travel time (hr) L = flow length (ft)
Paved, Gravel, Grass Woods CN 40 41 42 43 44 43 44 45 46 47 48	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167	TABLE 4-1, s for runoff c 60 61 62 63 64 65 66 67 68	TR-55 curve numb 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985 0.941	ers CN 80 81 82 83 84 85 86 87 88	0.011 0.24 0.40 1 a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.326 0.299 0.273	OPEN CHAI $V = 1.49r^{2/3}s^{1/2}$ n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coel r = P_w a = cross sectional flow area (ft2)	NNEL FLOW (channel slope, ft/ft) ifficient for open channel flow $T_{t} = \underbrace{L}_{3600V}$ $T_{t} = travel time (hr)$ $L = flow length (ft)$ $V = average velocity (ft/s)$
Paved, Gravel, Grass Woods CN 40 41 42 43 44 45 46 46 46 47 48 49	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.082	TABLE 4-1, s for runoff c 60 61 62 63 64 65 66 67 68 69	TR-55 curve numb 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985 0.941 0.899	ers CN 80 81 82 83 84 85 86 87 88 89	0.011 0.24 0.40 I _a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.326 0.299 0.273 0.247	$V = \underbrace{1.49r^{2/3}s^{1/2}}_{n}$ $V = Average Velocity (ft/s)$ $r = hydraulic radius (ft)$ $s = slope of hydraulic grade lin n = Manning's roughness coef r = \underbrace{a}_{p_w} a = cross sectional flow area (ft2) p_w = wetted perimeter (ft)$	NNEL FLOW (channel slope, ft/ft) ifficient for open channel flow $T_{t} = \underbrace{L}_{3600V}$ $T_{t} = travel time (hr)$ $L = flow length (ft)$ $V = average velocity (ft/s)$
Paved, Gravel, Grass Woods CN 40 41 42 43 44 45 46 47 48 49 50	SCRIPTION or Bare Soil I _a values I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.167 2.082 2.000	TABLE 4-1, s for runoff c 60 61 62 63 64 65 66 67 68 68 69 70	TR-55 curve numb la (in) 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985 0.941 0.899 0.857	ers CN 80 81 82 83 84 85 86 87 88 89 90	0.011 0.24 0.40 1 a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.326 0.299 0.273 0.247 0.222	OPEN CHAI $V = _ 1.49r^{2/3}s^{1/2}$ n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coef $r = _ a$ p_w a = cross sectional flow area (ft2) p_w =wetted perimeter (ft)	NNEL FLOW Terminal slope, ft/ft) ifficient for open channel flow $T_{t} = \underbrace{L}_{3600V}$ $T_{t} = travel time (hr)$ $L = flow length (ft)$ $V = average velocity (ft/s)$ $3600 = conversion factor (sec-hrs)$
Paved, Gravel, Grass Woods CN 40 41 42 43 44 45 46 47 48 49 50 51	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.082 2.167 2.082 2.000 1.922	TABLE 4-1, s for runoff o 60 61 62 63 64 65 66 67 68 69 70 71	TR-55 surve numb 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985 0.941 0.899 0.857 0.817	ers CN 80 81 82 83 84 85 86 87 88 89 90 91	0.011 0.24 0.40 1 _a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.353 0.353 0.352 0.299 0.273 0.247 0.247 0.222 0.198	OPEN CHAI $V = \underbrace{1.49r^{2/3}s^{1/2}}{n}$ $V = Average Velocity (ft/s)$ $r = hydraulic radius (ft)$ $s = slope of hydraulic grade lin n = Manning's roughness coel r = \underbrace{a}{p_w} a = cross sectional flow area (ft2) p_w = wetted perimeter (ft) TABLE 3Rational Runce$	NNEL FLOW Image: state of the
Paved, Gravel, Grass Woods CN 40 41 42 43 44 45 43 44 45 45 46 47 48 49 50 51 52	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.082 2.000 1.922 1.846	TABLE 4-1, s for runoff c 60 61 62 63 64 65 66 67 68 69 70 71 72	TR-55 surve numb 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985 0.941 0.899 0.857 0.817 0.778	ers CN 80 81 82 83 84 85 86 87 88 89 90 91 92	0.011 0.24 0.40 1a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.247 0.229 0.273 0.247 0.222 0.198 0.174	OPEN CHAI $V = \underbrace{1.49r^{2/3}s^{1/2}}{n}$ $V = Average Velocity (ft/s)$ $r = hydraulic radius (ft)$ $s = slope of hydraulic grade lin n = Manning's roughness coef r = \underbrace{a}{p_w} a = cross sectional flow area (ft2) p_w = wetted perimeter (ft) TABLE 3Rational RunceCHANNEL LINING$	NNEL FLOW The (channel slope, ft/ft) Ifficient for open channel flow $T_{t} = \underline{L}$ $3600V$ $T_{t} = travel time (hr)$ $L = flow length (ft)$ $V = average velocity (ft/s)$ $3600 = conversion factor (sec-hrs)$ $3-9, TR-55$ $off Coefficients$
Paved, Gravel, Grass Woods CN 40 41 42 43 44 45 46 47 48 49 50 51	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.082 2.167 2.082 2.000 1.922	TABLE 4-1, s for runoff o 60 61 62 63 64 65 66 67 68 69 70 71	TR-55 surve numb 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985 0.941 0.899 0.857 0.817	ers CN 80 81 82 83 84 85 86 87 88 89 90 91	0.011 0.24 0.40 1 _a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.353 0.353 0.352 0.299 0.273 0.247 0.247 0.222 0.198	OPEN CHAI $V = \underbrace{1.49r^{2/3}s^{1/2}}{n}$ $V = Average Velocity (ft/s)$ $r = hydraulic radius (ft)$ $s = slope of hydraulic grade lin n = Manning's roughness coel r = \underbrace{a}{p_w} a = cross sectional flow area (ft2) p_w = wetted perimeter (ft) TABLE 3Rational Runce$	NNEL FLOW Image: state of the
Paved, Gravel, Grass Woods CN 40 41 42 43 44 43 44 45 46 45 46 47 48 49 50 51 51 52 53 53 54 55	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.082 2.000 1.922 1.846 1.774 1.774 1.636	TABLE 4-1, s for runoff of 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	TR-55 surve numb 1.333 1.279 1.226 1.175 1.125 1.125 1.125 1.125 1.125 1.077 1.030 0.985 0.941 0.899 0.857 0.817 0.778 0.740 0.740 0.703 0.667	ers CN 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	0.011 0.24 0.40 0.40 0.500 0.469 0.439 0.410 0.381 0.353 0.326 0.299 0.273 0.247 0.222 0.198 0.174 0.151 0.128 0.105	OPEN CHAI $V = 1.49r^{2/3}s^{1/2}$ n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coef r = p_w a = cross sectional flow area (ft2) p_w =wetted perimeter (ft) TABLE 3 Rational Runce CHANNEL LINING Asphalt Concrete, finished Concrete, unfinished	NNEL FLOW 12 ne (channel slope, ft/ft) ifficient for open channel flow $T_t = _____$ 3600V $T_t = travel time (hr)$ L = flow length (ft) V = average velocity (ft/s) 3600 = conversion factor (sec-hrs) 3-9, TR-55 off Coefficients n 0.016 0.012 0.014
Paved, Gravel, Grass Woods CN 40 41 42 43 44 45 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56	SCRIPTION or Bare Soil l _a values l _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.444 2.348 2.255 2.167 2.082 2.000 1.922 1.846 1.774 1.704 1.704 1.636 1.571	TABLE 4-1, s for runoff of 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	TR-55 curve numb 1.333 1.279 1.226 1.175 1.125 1.077 1.030 0.985 0.941 0.899 0.857 0.817 0.740 0.740 0.740 0.740 0.667 0.632	ers CN 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	0.011 0.24 0.40 1 a (in) 0.500 0.469 0.439 0.410 0.381 0.353 0.247 0.326 0.299 0.273 0.247 0.222 0.198 0.174 0.151 0.105 0.083	OPEN CHAI $V = 1.49r^{2/3}s^{1/2}$ n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coef r = a = cross sectional flow area (ft2) pw=wetted perimeter (ft) TABLE 3 Rational Runce CHANNEL LINING Asphalt Concrete, finished Grass	NNEL FLOW 12 ne (channel slope, ft/ft) ifficient for open channel flow $T_t = ____$ 3600V T_t =travel time (hr) L = flow length (ft) V = average velocity (ft/s) 3600 = conversion factor (sec-hrs) 3-9, TR-55 off Coefficients n 0.016 0.014 0.035
Paved, Gravel, Grass Woods CN 40 41 42 43 44 43 44 45 46 45 46 47 48 49 50 51 51 52 53 53 54 55	SCRIPTION or Bare Soil I _a values I _a (in) 3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.082 2.000 1.922 1.846 1.774 1.774 1.636	TABLE 4-1, s for runoff of 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	TR-55 surve numb 1.333 1.279 1.226 1.175 1.125 1.125 1.125 1.125 1.125 1.077 1.030 0.985 0.941 0.899 0.857 0.817 0.778 0.740 0.740 0.703 0.667	ers CN 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	0.011 0.24 0.40 0.40 0.500 0.469 0.439 0.410 0.381 0.353 0.326 0.299 0.273 0.247 0.222 0.198 0.174 0.151 0.128 0.105	OPEN CHAI $V = 1.49r^{2/3}s^{1/2}$ n V=Average Velocity (ft/s) r = hydraulic radius (ft) s = slope of hydraulic grade lin n = Manning's roughness coef r = p_w a = cross sectional flow area (ft2) p_w =wetted perimeter (ft) TABLE 3 Rational Runce CHANNEL LINING Asphalt Concrete, finished Concrete, unfinished	NNEL FLOW 12 ne (channel slope, ft/ft) ifficient for open channel flow $T_t = _____$ 3600V $T_t = travel time (hr)$ L = flow length (ft) V = average velocity (ft/s) 3600 = conversion factor (sec-hrs) 3-9, TR-55 off Coefficients n 0.016 0.012 0.014

DISCONNECTED IMPERVIOUS CALCULATION	DISCONNECTED	IMPERVIOUS	CALCULATION
-------------------------------------	--------------	------------	-------------

$$\begin{split} & CN_{adjusted} = CN_p + [(P_{imp}/100)^*(98\text{-}CN_p)^*(1-(0.5^*R))] \\ & Where: \\ & CN_{adjusted} = Composite Curve Number \\ & CN_p = Pervious runoff curve number = (PostCN - (Pimp/100)^*98)/(1 - (Pimp/100)) \\ & P_{imp} = Percent Imperviousness \\ & R = ratio of unconnected impervious area to total impervious area \end{split}$$

TABLE 4-1, SW BM	1P MANUAL	_
BMP ABILITY	FOR	
SW QUANTITY C	ONTROL	
BMP	TSS	TN
Bioretention without IWS	85%	35%
Bioretention with IWS	85%	40%
Stormwater Wetlands	85%	40%
Wet Detention Basin	85%	25%
Sand Filter	85%	35%
Filter Strip	25-40%	20%
Grass Swale	35%	20%
Restored Riparian Buffer	60%	30%
Infiltration Device	85%	30%
Dry Extended Detention Basin	50%	10%
Permeable Pavement	0%	0%
Rooftop Runoff Management (Excluding Cisterns)	0%	0%
Cistern/Underground Detention	See Note	100%

¹ Use of underground detention reduces total volume required for storage as well total nitrogen load. To receive total reduction,

APPENDIX F

 $\langle S \rangle$

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

