Stormwater Management Report

And

Erosion Control Calculations

for

Weaver's Pointe Subdivision

Zebulon North Carolina

Prepared by:

Piedmont Land Design. PLLC 8522-204 Six Forks Rd. Raleigh, NC

Table of Contents

Section

Project Narrative and Stormwater Runoff Summary

Appendix A – USDA Soils, USGS, and FEMA Map

- Appendix B Wake County Stormwater Municipal Tool
- Appendix C Stormwater Routing Calcs
- Appendix D SCM Drainage Area Map
- Appendix E Storm Sewer System Calculations
- Appendix F Gutter Spread Calculations
- Appendix G Storm Sewer System Drainage Area Map
- Appendix H Sediment Basin Drainage Area Map
- Appendix I Sediment Basin Skimmer Sizing Calculations
- Appendix J Temporary Diversion Ditch/Slope Drain Calculations
- Appendix K Energy Dissipater Calculations

Weavers Point Subdivision Zebulon, North Carolina

Project Narrative

The proposed residential project is located on a 43.10 acre vacant, mostly wooded lot. The proposed development includes construction of 87 single family residential properties. The site is located in Zebulon, NC approximately 2.80 miles northeast of US 64 at coordinates 35° 51' 44.5644" N 78° 20' 4.2756" W. The site is located in the Neuse River watershed basin . The proposed development provides two wet detention SCMs for water quantity and quality treatment.

Stormwater Runoff Analysis

CIVIL 3D 2019 software Hydrograph extensions were utilized to model the runoff, time of concentration and routing calculations. The calculations for the 1-year and 10-year storms for predeveloped and post-development drainage areas for each stormwater discharge location are provided in this report. (See Appendix B, C, and D for details.)

This site consists of soils predominantly hydrological soil group type "C". Refer to the USDA Soil Map in Appendix A for reference.

The site is subject to the Wake County Stormwater rules for the Town of Zebulon.

Following are the stormwater requirements:

- Post-developed peak flows cannot exceed pre-developed flows for the 1 year storm.
- Control the first 1" runoff volume and drawn down per SCM requirements.
- Provide 85% TSS removal.
- Ensure the specified volume, as determined by the Stormwater Municipal Tool, is controlled and released in 2-5 days.

Stormwater Runoff Summary

See the Wake County Stormwater Municipal Tool spreadsheet provided in Appendix B for complete SCM design data. The results of pre and post-development peak flows for Discharge Point #1-#5 are shown in the tables below.

Discharge Point #1

Required Volume to be controlled = 11,344 cf. Volume Provided =12,203 cf

Stormwa	ter Kunoff	Results
Storm Event	Pre-Development	Post-Development
	_	with Detention
1-Year	10.05 cfs	8.34 cfs
10-Year	33.66 cfs	30.41 cfs

Discharge Point #2

Required Volume to be controlled = 30,619 cf. Volume Provided = 32,020 cf

Stormwater Runoff Results

Storm Event	Pre-Development	Post-Development with Detention
1-Year	9.56 cfs	4.48 cfs
10-Year	32.03 cfs	31.07 cfs

Discharge Point #3

Required Volume to be controlled = n/a

Stormwater Runoff Results

Storm Event	Pre-Development	Post-Development
1-Year	1.46 cfs	1.36 cfs
10-Year	4.88 cfs	3.31 cfs

Post-developed flow is less than pre-developed flow.

Discharge Point #4

Required Volume to be controlled = n/a

Stormwater Runoff Results

Storm Event	Pre-Development	Post-Development
1-Year	4.94 cfs	3.33 cfs
10-Year	16.55 cfs	8.76 cfs

Post-developed flow is less than pre-developed flow.

Discharge Point #5

Required Volume to be controlled = n/a

Stormwater Runoff Results

Storm Event	Pre-Development	Post-Development
1-Year	2.48 cfs	2.44 cfs
10-Year	8.32 cfs	6.30 cfs

Post-developed flow is less than pre-developed flow.

Required Surface Area for SCM's:

SCM #1							
Table 1	Surface Area	a to Draina	ge Area F	Ratio for Po	ermanent Po	ol Sizing	
	Piedmont an	d Mountai	n				
%Impervious			Permane	ent Pool D	epth (feet)		
Cover	3.0	4.0	5.0	6.0	7.0	8.0	9.0
10	0.51	0.43					
20	0.84	0.69					
30	1.17	0.94					
40	1.51	1.24					
50	1.79	1.51			1 1		
60	2.09	1.77					
70	2.51	2.09					
80	2.92	2.41	·				
90	3.25	2.64					
				% IA	Imp. Area		
			POND	% IA	Imp. Area (ac)		
	SCM - WET DE		POND Area	% IA 100	Imp. Area (ac) 2.10		
	SCM - WET DE		POND Area (ac)		(ac)		
	CM - WET DE Land	Use	POND Area (ac) 2.1 3.9	100	(ac) 2.10 0.00		
	CM - WET DE Land		POND Area (ac) 2.1	100	(ac) 2.10		
STORMWATER S	CM - WET DE Land	Use Totals	POND Area (ac) 2.1 3.9 6.00	100	(ac) 2.10 0.00		
STORMWATER S	ECM - WET DE Land Impervious Open Space	TENTION I	POND Area (ac) 2.1 3.9 6.00 ce Area =	100 0 35.0	(ac) 2.10 0.00 2.10		
STORMWATER S	CM - WET DE Land Impervious Open Space tal % Impervi	TENTION I Use Totals ous Surfac	POND Area (ac) 2.1 3.9 6.00 ce Area =	100 0 35.0	(ac) 2.10 0.00 2.10		
STORMWATER S	CM - WET DE Land Impervious Open Space tal % Impervi Surface Area Assumo	TENTION I Use Totals ous Surfac a of Perma ed depth =	POND Area (ac) 2.1 3.9 6.00 ce Area = ment Pool 3	100 0 35.0	(ac) 2.10 0.00 2.10 %		
STORMWATER S	CM - WET DE Land Impervious Open Space tal % Impervi Surface Area Assumo	TENTION I Use Totals ous Surfac	POND Area (ac) 2.1 3.9 6.00 ce Area =	100 0 35.0	(ac) 2.10 0.00 2.10	⇒ 1.1	
STORMWATER S	CM - WET DE Land Impervious Open Space tal % Impervi Surface Area Assumo	TENTION I Use Totals ous Surface a of Perma ed depth = 'DA ratio = d surface a	POND Area (ac) 2.1 3.9 6.00 ce Area = ment Poc 3 1.09	100 0 35.0 6et %	(ac) 2.10 0.00 2.10 %		
Source: NCDEQ Storn STORMWATER S To	CM - WET DE Land Impervious Open Space tal % Impervi Surface Area Assumo SA/	TENTION I Use Totals ous Surface a of Perma ed depth = 'DA ratio =	POND Area (ac) 2.1 3.9 6.00 ce Area = ment Poc 3 1.09	100 0 35.0 6et %	(ac) 2.10 0.00 2.10 %		

* Required Volume to be controlled as determined by the Wake County Spreadsheet

SCM #2							
Table 1	Surface Area	a to Draina	ge Area F	Ratio for Po	ermanent Po	ol Sizing	
	Piedmont an	nd Mountai	'n				
% Impervious			Permane	ent Pool D	epth (feet)		
Cover	3.0	4.0	5.0	6.0	7.0	8.0	9.0
10	0.51	0.43					
20	0.84	0.69					
30	1.17	0.94					
40	1.51	1.24					
50	1.79	1.51					
60	2.09	1.77					
70	2.51	2.09					
80	2.92	2.41					
90	3.25	2.64					
STORMWATER S	CM - WET DE		POND				
STORMWATER S	CM - WET DE		POND	%IA	Imp. Area		
STORMWATER S	CM - WET DE			%IA	Imp. Area (ac)		
STORMWATER S			Area	% IA 100			
STORMWATER S	Land		Area (ac)		(ac)		
STORMWATER S	Land Impervious	Use	Area (ac) 7.4 14.9	100	(ac) 7.40 0.00		
STORMWATER S	Land Impervious		Area (ac) 7.4	100	(ac)		
	Land Impervious	Use Totals	Area (ac) 7.4 14.9 22.30	100 0	(ac) 7.40 0.00		
STORMWATER S	Land Impervious Open Space	Use Totals ous Surfac	Area (ac) 7.4 14.9 22.30 ce Area =	100 0 33.2	(ac) 7.40 0.00 7.40		
	Land Impervious Open Space tal % Impervi Surface Area	Use Totals ous Surfac	Area (ac) 7.4 14.9 22.30 ce Area =	100 0 33.2	(ac) 7.40 0.00 7.40		
	Land Impervious Open Space tal % Impervi Surface Area Assum	Use Totals ous Surfac a of Perma	Area (ac) 7.4 14.9 22.30 ce Area =	100 0 33.2	(ac) 7.40 0.00 7.40	€ 1.1	
	Land Impervious Open Space tal % Impervi Surface Area Assum	Use Totals ous Surfac a of Perma ed depth = /DA ratio =	Area (ac) 7.4 14.9 22.30 22.30 ce Area = anent Poo 3 1.04	100 0 33.2 51: feet %	(ac) 7.40 0.00 7.40 %		
	Land Impervious Open Space tal % Impervi Surface Area Assum SA	Use Totals ous Surfac a of Perma ed depth = /DA ratio =	Area (ac) 7.4 14.9 22.30 22.30 ce Area = anent Poo 3 1.04	100 0 33.2 51: feet %	(ac) 7.40 0.00 7.40 %		

* Required Volume to be controlled as determined by the Wake County Spreadsheet

SCM Drainage Area calculations:

Discharge Point #1

<u>Pre-developed</u> Drainage Area = 16.0 acres

 $\frac{Post-developed}{Drainage area} = 12.1 \text{ acres}$

<u>To SCM:</u> Drainage area = 6.0 acres Open Space = 3.9 acres Impervious: = 1.0 acres roads/sidewalk + amenity 1.1 acres (14 lots @ 3,500 sf / lot) 2.1 acres total impervious

<u>Bypass:</u> Drainage area = 6.1 acres Open Space = 5.4 acres Impervious: = 0.7 acres total impervious (includes greenway and 9 lots)

Discharge Point #2

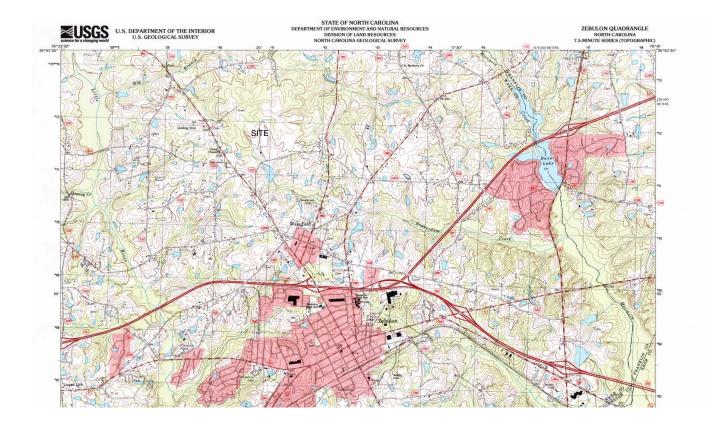
 $\frac{\text{Pre-developed}}{\text{Drainage Area}} = 13.5 \text{ acres}$

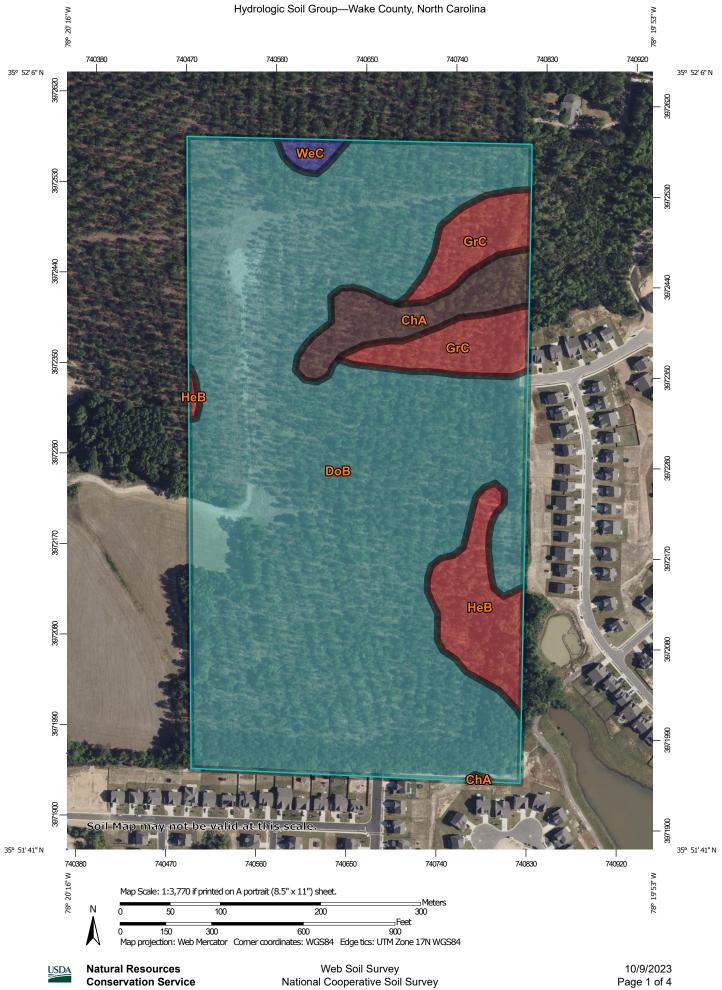
 $\frac{Post-developed}{Drainage area} = 26.5 acres$

<u>To SCM:</u> Drainage area = 22.3 acres Open Space = 14.9 acres Impervious: = 3.9 acres roads/sidewalk 3.5 acres (44 lots @ 3,500 sf / lot) 7.4 acres total impervious

<u>Bypass:</u> Drainage area = 4.2 acres Open Space = 3.7 acres Impervious: = 0.5 acres total impervious (includes greenway and 6 lots)

Anti-Floatation Calculations


			SCM #	1				
		Box	Box	Submerge	ed			
		Width (ft)	Depth (ft)	Height (ft	<u>)</u>			
Water Displacement	=	(5.0)	(5.0)	(4.3)	=	107.5	cf	
Bouyant Force	=	107.5	cf x 62.4	4 pcf	=	6,708	lbs	
					Weight of			
		Box	Box	Depth of	Concrete			
		Width (ft)	Depth (ft)	Concrete	<u>(pcf)</u>			
Structure Weight	=	(5.0)	(5.0)	(2.0)	150	=	7,500	lbs
**Structure Weight = (nuantit	v of concrete	e provided	at hottom	of structur	A		


**Structure Weight = quantity of concrete provided at bottom of structure

			SCM #	2				
		Box	Box	Submerge	ed			
		Width (ft)	Depth (ft)	Height (ft)			
Water Displacement	=	(5.0)	(5.0)	(4.0)	=	100.0	cf	
Bouyant Force	=	100.0	cf x 62.	4 pcf	=	6,240	lbs	
					Weight of			
		Box	Box	Depth of	Concrete			
		Width (ft)	Depth (ft)	Concrete	<u>(pcf)</u>			
Structure Weight	=	(5.0)	(5.0)	(2.0)	150	=	7,500	lbs
**Structure Weight = c	mantity	of concrete	e nrovided	at hottom	of structure	_		

Appendix A USDA Soils, USGS, and FEMA Map

Conservation Service

Web Soil Survey National Cooperative Soil Survey Appendix B Wake County Stormwater Municipal Tool

SITE DATA

		Project Information
	Project Name:	Weavers Point Subdivision
	Applicant:	Piedmont Land Design, PLLC
	Applicant Contact Name:	Mike Schneider
	Applicant Contact Number:	919-845-7600
	Contact Email:	mikes@piedmontlanddesign.com
	Municipal Jurisdiction (Select from dropdown menu):	Zebulon
	Last Updated:	
		Site Data:
	Total Site Area (Ac):	43.10
	Existing Lake/Pond Area (Ac):	0.00
	Proposed Disturbed Area (Ac):	0.00
		44.04
	Impervious Surface Area (acre):	11.94
	Type of Development (Select from Dropdown menu):	Residential
	Percent Built Upon Area (BUA):	28%
	Project Density:	High
	Is the proposed project a site expansion?	No
	Number of Drainage Areas on Site:	5
	1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.85
NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website):	3.45
	10-Year, 24-Hour Storm (inches) (See NOAA Website):	5.11
		Lot Data (if applicable):
	Total Acreage in Lots:	0.25
	Number of Lots:	87
	Average Lot Size (SF):	10890.00
	Total Impervious Surface Area on Lots (SF):	304500.00
	Average Impervious Surface Area Per Lot (SF):	3500.00
properties. The spasin. The properties of the pr	site is located in Zebulon, NC approximately 2.80 miles northeas osed development provides two wet detention SCMs for water of	s of mainly wooded tract of land. The proposed development includes construction of 87 single family residential t of US 64 at coordinates 35° 51' 44.5644" N 78° 20' 4.2756" W. The site is located in the Neuse River watershed uantity volume control, water quality treatment, and an outlet control structure to reduce post-development peak flo we been accounted for in the Hydraflow modeling system and confirmed that there is no negative downstream

Weavers Point Subdivision

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

AND USE & SITE DATA	Р	RE-DEVE	ELOPMEN	іт	PO	ST-DEV	ELOPMEN	T
Drainage Area (Acres)=		16	6.00		12.10			
Site Acreage within Drainage=		16	6.00			12	.10	
One-year, 24-hour rainfall (in)=				2.	85			
Two-year, 24-hour rainfall (in)=				3.	45			
Ten-year, 24-hour storm (in)=				5.	11			
Total Lake/Pond Area (Acres)=								
Lake/Pond Area not in the Tc flow path (Acres)=								
Site Land Use (acres):	А	В	С	D	А	В	С	D
Pasture								
Woods, Poor Condition								
Woods, Fair Condition								
Woods, Good Condition			16.00					
Open Space, Poor Condition								
Open Space, Fair condition								
Open Space, Good Condition							9.30	
Reforestation (in dedicated OS)								
Connected Impervious							2.10	
Disconnected Impervious							0.70	
SITE FLOW	PR	E-DEVE	OPMENT	T T _c	POS	T-DEVE	LOPMENT	ГТс
Sheet Flow								
Length (ft)=		25	5.00			25	.00	
Slope (ft/ft)=		0.	020			0.0)20	
Surface Cover:		Wo	oods			Wo	ods	
n-value=		0.	400			0.4	400	
T _t (hrs)=		0.	125			0.1	125	
Shallow Flow					•			
Length (ft)=		97	5.00			250	0.00	
Slope (ft/ft)=		0.	020			0.0)20	
Surface Cover:		Unp	aved			Unp	aved	
Average Velocity (ft/sec)=		2	.28			2.	28	
T _t (hrs)=		0	.12			0.	03	
Channel Flow 1								
Length (ft)=						300	0.00	
Slope (ft/ft)=						0.0	005	
Cross Sectional Flow Area (ft ²)=						0.	56	
Wetted Perimeter (ft)=						4.	70	
Channel Lining:						Concrete	, finished	
n-value=						0.0)12	
Hydraulic Radius (ft)=						0.	12	
						2	13	
Average Velocity (ft/sec)=						۷.	15	

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.24	0.19
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	70	80
Disconnected Impervious Adjustment		
Disconnected impervious area (acre) =	0.	
Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	0. ⁻ 8	
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only		
Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		0
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	8	0
Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	8	0
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	8	0 344
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	8 11,- 0.63	0 344 1.11 48,844
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	8 11,: 0.63 36,738	0 344 1.11 48,844
Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	8 11, 0.63 36,738 12,	0 344 <u>1.11</u> 48,844 106
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} =	8 11, 0.63 36,738 12,	0 344 <u>1.11</u> 48,844 106
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	8 11,5 0.63 36,738 12, 10.050	0 344 1.11 48,844 106 16.991
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	8 0.63 36,738 12, 10.050 0.98	0 344 1.11 48,844 106 16.991 1.57
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	8 11,: 0.63 36,738 12, 10.050 0.98 56,766	0 344 1.11 48,844 106 16.991 1.57 68,751
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Velume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} =	8 11,: 0.63 36,738 12, 10.050 0.98 56,766	0 344 1.11 48,844 106 16.991 1.57 68,751
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	8 11,- 0.63 36,738 12,- 10.050 0.98 56,766 15.529	0 344 1.11 48,844 106 16.991 1.57 68,751 23.916

Weavers Point Subdivision

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

AND USE & SITE DATA	Р	RE-DEVE		Т	POST-DEVELOPMENT						
Drainage Area (Acres)=		13	3.50			26	.50				
Site Acreage within Drainage=		13	5.50			26	.50				
One-year, 24-hour rainfall (in)=				2.	85						
Two-year, 24-hour rainfall (in)=				3.	45						
Ten-year, 24-hour storm (in)=				5.	11						
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	А	В	С	D	А	В	С	D			
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition			13.50								
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition							18.60				
Reforestation (in dedicated OS)											
Connected Impervious							7.40				
Disconnected Impervious							0.50				
SITE FLOW	PRE-DEVELOPMENT T _c			POST-DEVELOPMENT Tc							
Sheet Flow											
Length (ft)=		25	5.00			25	.00				
Slope (ft/ft)=		0.	030		0.020						
Surface Cover:		Wo	oods		Woods						
n-value=		0.	400		0.400						
T _t (hrs)=		0.	106		0.125						
Shallow Flow											
Length (ft)=		82	5.00								
Slope (ft/ft)=		0.	030								
Surface Cover:		Unp	aved								
Average Velocity (ft/sec)=		2	.79								
T _t (hrs)=		0	.08								
Channel Flow 1											
Length (ft)=						170	0.00				
Slope (ft/ft)=						0.0	005				
Cross Sectional Flow Area (ft ²)=						1.	77				
Wetted Perimeter (ft)=						4.	70				
Channel Lining:						Concrete	e, finished				
n-value=						0.0	012				
Hydraulic Radius (ft)=						0.	38				
Average Velocity (ft/sec)=						4.	58				
T _t (hrs)=						0.	10				

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.19	0.23
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number	70	
Composite Curve Number=	70	81
Disconnected Impervious Adjustment		
Disconnected Impervious Adjustment Disconnected impervious area (acre) =	0.:	50
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		50
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	0.:	50
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	0.:	50 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	0.: 8	50 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	0.: 8	50 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	0.: 8 30,	50 1 619
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	0.: 8 30, 0.63	50 1 619 1.21 116,258
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	0.: 8 30, 0.63 30,998	50 1 619 1.21 116,258
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	0.: 8 30, 0.63 30,998 85,	50 1 619 1.21 116,258 260
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} =	0.: 8 30, 0.63 30,998 85,	50 1 619 1.21 116,258 260
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	0.: 8 30, 0.63 30,998 85, 9.564	50 1 619 <u>1.21</u> 116,258 260 <u>37.994</u>
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (i-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	0.1 8 30, 0.63 30,998 85, 9.564 0.98	50 1 619 1.21 116,258 260 <u>37.994</u> <u>1.68</u>
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (i-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	0.3 8 30, 0.63 30,998 85, 9.564 0.98 47,896	50 1 619 1.21 116,258 260 37.994 1.68 161,514
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} =	0.3 8 30, 0.63 30,998 85, 9.564 0.98 47,896	50 1 619 1.21 116,258 260 37.994 1.68 161,514
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q^*_{1-year} = Volume of runoff (ft ³) = Volume of runoff (inches) = Q^*_{1-year} = Volume change (ft ³) = Peak Discharge (cfs) = Q_{1-year} = Volume of runoff (inches) = Q^*_{2-year} = Volume of runoff (inches) = Q^*_{2-year} = Volume of runoff (it ³) = Peak Discharge (cfs) = Q_{2-year} = Volume of runoff (it ³) = Peak Discharge (cfs) = Q_{2-year} = 10-year, 24-hour storm (DIA)	0.3 8 30, 0.63 30,998 85, 9.564 0.98 47,896 14.778	50 1 619 1.21 116,258 260 37.994 1.68 161,514 52.784

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

AND USE & SITE DATA	Р	RE-DEVI	ELOPMEN	ІТ	POST-DEVELOPMENT						
Drainage Area (Acres)=		1	.80			0.	50				
Site Acreage within Drainage=		1	.80			0.	50				
One-year, 24-hour rainfall (in)=				2.	35						
Two-year, 24-hour rainfall (in)=				3.4	45						
Ten-year, 24-hour storm (in)=				5.	11						
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	А	В	С	D	А	В	С	D			
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition			1.80								
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition							0.30				
Reforestation (in dedicated OS)		-									
Connected Impervious							0.20				
Disconnected Impervious											
SITE FLOW	PR	E-DEVEI	OPMENT	Г Т _с	POS	T-DEVE	LOPMENT	Тс			
Sheet Flow											
Length (ft)=		25	5.00			25	.00				
Slope (ft/ft)=		0.	030		0.600						
Surface Cover:		Wo	oods		Grass						
n-value=		0.	400		0.240						
T _t (hrs)=		0.	106		0.021						
Shallow Flow											
Length (ft)=		32	5.00		100.00						
Slope (ft/ft)=		0.	030			0.0	020				
Surface Cover:		Unp	aved			Unp	aved				
Average Velocity (ft/sec)=		2	.79			2.	28				
T _t (hrs)=		0	.03			0.	.01				
Channel Flow 1											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft ²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Hydraulic Radius (tt)= Average Velocity (ft/sec)=											

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.14	0.03
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	70	84
Disconnected Impervious Adjustment		
Disconnected impervious area (acre) =		
Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	8	4
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	8	4
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA		1 4
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only		
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)		
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	74	44
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	0.63	1.37
Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	0.63	1.37
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	0.63 4,133	14 1.37 2,481
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} =	0.63 4,133	14 1.37 2,481
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID)	0.63 4,133 1.458	44 1.37 2,481 1.356
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	0.63 4,133 1.458 0.98	44 1.37 2,481 1.356 1.86
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	0.63 4,133 1.458 0.98 6,386	14 1.37 2,481 1.356 1.86 3,381
Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{2-year} =	0.63 4,133 1.458 0.98 6,386	14 1.37 2,481 1.356 1.86 3,381
Disconnected impervious area (acre) = $CN_{adjusted (1-year)}$ = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	0.63 4,133 1.458 0.98 6,386 2.253	44 1.37 2,481 1.356 1.86 3,381 1.847

*

NORTH CAROLINA

Project Name:

DRAINAGE AREA 4 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE		ІТ	POST-DEVELOPMENT						
Drainage Area (Acres)=		8	.20			2.	60				
Site Acreage within Drainage=		8	.20			2.	60				
One-year, 24-hour rainfall (in)=				2.	35						
Two-year, 24-hour rainfall (in)=				3.4	45						
Ten-year, 24-hour storm (in)=				5.	11						
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	А	В	С	D	А	В	С	D			
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition			8.20								
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition							1.96				
Reforestation (in dedicated OS)											
Connected Impervious							0.64				
Disconnected Impervious											
SITE FLOW	PR	E-DEVE	OPMENT	T T _c	POS	T-DEVE	LOPMEN	Tc			
Sheet Flow											
Length (ft)=		25	5.00			25	.00				
Slope (ft/ft)=		0.	010		0.010						
Surface Cover:		Wo	oods		Woods						
n-value=		0.	400		0.400						
T _t (hrs)=		0.	165		0.165						
Shallow Flow											
Length (ft)=		82	5.00		650.00						
Slope (ft/ft)=		0.	020			0.0	015				
Surface Cover:		Unp	aved			Unp	aved				
Average Velocity (ft/sec)=		2	.28			1.	98				
T _t (hrs)=		0	.10			0.	.09				
Channel Flow 1											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft ²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=											

DRAINAGE AREA 4 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		~
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.27	0.26
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	70	80
Disconnected Impervious Adjustment	70	80
Disconnected Impervious Adjustment Disconnected impervious area (acre) =		
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		80 30
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only		
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	8	
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	8	30
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	8	30
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	2,5	30 563
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	2,1 0.63	30 563 1.13
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	2,1 0.63	30 563 1.13
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	2,1 0.63 18,828	30 563 1.13 10,696
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year) ⁼ High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} =	2,1 0.63 18,828	30 563 1.13 10,696
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	2,1 0.63 18,828 4.942	30 563 1.13 10,696 3.331
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	2,5 0.63 18,828 4.942 0.98	30 563 1.13 10,696 3.331 1.59
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* 1-year Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* 2-year Volume of runoff (ft ³) =	2,5 0.63 18,828 4.942 0.98 29,092	30 563 1.13 10,696 3.331 1.59 15,011
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} =	2,5 0.63 18,828 4.942 0.98 29,092	30 563 1.13 10,696 3.331 1.59 15,011
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = Volume of runoff (ft ³) =	2,5 0.63 18,828 4.942 0.98 29,092 7.637	30 563 1.13 10,696 3.331 1.59 15,011 4.675

Weavers Point Subdivision

DRAINAGE AREA 5 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE	ELOPMEN	ІТ	POST-DEVELOPMENT						
Drainage Area (Acres)=		3	.50			1.	40				
Site Acreage within Drainage=		3	.50			1.	40				
One-year, 24-hour rainfall (in)=				2.	85						
Two-year, 24-hour rainfall (in)=				3.4	45						
Ten-year, 24-hour storm (in)=				5.	11						
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	А	В	С	D	А	В	С	D			
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition			3.30								
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition							1.00				
Reforestation (in dedicated OS)											
Connected Impervious							0.40				
Disconnected Impervious											
SITE FLOW	PR	E-DEVE	OPMENT	Г Т _с	POS	T-DEVE	LOPMENT	Tc			
Sheet Flow											
Length (ft)=		25	5.00			25	.00				
Slope (ft/ft)=		0.	020		0.015						
Surface Cover:		Wo	oods		Grass						
n-value=		0.	400		0.240						
T _t (hrs)=		0.	125		0.093						
Shallow Flow											
Length (ft)=		57	5.00		200.00						
Slope (ft/ft)=		0.	025			0.0	010				
Surface Cover:		Unp	aved			Unp	aved				
Average Velocity (ft/sec)=		2	.55			1.	.61				
T _t (hrs)=		0	.06			0.	.03				
Channel Flow 1					-						
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft ²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=											

DRAINAGE AREA 5 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.19	0.13
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number		
Composite Curve Number=	70	81
Disconnected Impervious Adjustment	70	81
Disconnected Impervious Adjustment Disconnected impervious area (acre) =		
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		81
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only		
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	8	
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	8	31
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	8	31
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	8 1,t	31 561
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	8 1,5 0.63	31 561 1.19
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	8 1,5 0.63	31 561 1.19
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	8 1,5 0.63 8,036	31 561 1.19 6,051
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} =	8 1,5 0.63 8,036	31 561 1.19 6,051
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	8 0.63 8,036 2.484	31 561 1.19 6,051 2.442
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	8 0.63 8,036 2.484 0.98	31 561 1.19 6,051 2.442 1.66
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	8 1,5 0.63 8,036 2.484 0.98 12,417	31 561 1.19 6,051 2.442 1.66 8,426
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (t-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} =	8 1,5 0.63 8,036 2.484 0.98 12,417	31 561 1.19 6,051 2.442 1.66 8,426
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = Volume of runoff (ft ³) =	8 0.63 8,036 2.484 0.98 12,417 3.837	31 561 561 2.442 1.66 8,426 3.400

Weavers Point Subdivision

DA SITE SUMMARY STORMWATER PRE-POST CALCULATIONS

		SITE	SUMMAR	(
DRAINAGE AREA SUMMARIES											
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
			(1-year, 24-			[1	1	1	I	
Runoff (in) = Q _{pre,1-year} =	0.63	0.63	0.63	0.63	0.63						
Peak Flow (cfs)=Q _{1-year} =	10.050	9.564	1.458	4.942	2.484		L				
			t (1-year, 24	1		1	1	1	1	1	
Proposed Impervious Surface (acre) =	2.80	7.90	0.20	0.64	0.40						
Runoff (in)=Q _{1-year} =	1.11	1.21	1.37	1.13	1.19						
Peak Flow (cfs)=Q _{1-year} =	16.991	37.994	1.356	3.331	2.442						
Increase in volume per DA (ft ³)_1-yr storm=	12,106	85,260									
Minimum Volume to be Managed for DA HIGH DENSITY REQUIREMENT = (ft^3) =	11,344	30,619	744	2,563	1,561						
TARGET CURVE NUMBER (TCN)											
		S	ite Data								
	:	SITE \SOIL	COMPOSI	TION							
HYDROLOGIC SOIL GRO	UP			Site	Area	0	%		Target CN	1	
A				0.	00	0	1%		N/A		
В				0.	00	0	1%		N/A		
С				43	.10	10	0%		N/A		
D				0.	00	0	1%		N/A		
		То	Total Site Area (acres) =			43.10					
Percent E	UA (Include	es Existing	Lakes/Pond	Areas) =		28%					
		Project Density =				High					
		Target Curve Number (TCN) =			N/A						
			CN _{adju}	sted (1-year)=		81					
Minimum Volume to be Mana	ged (Total S	Site) Per TCN Requirement= ft ³ =				N/A					
	5	Site Nitrog	en Loading	Data							
HSG		TN export			Site			N			
			coefficient (lbs/ac/yr)		Acreage			Export			
Pasture			1.2		0.00			0.00			
Woods, Poor Condition			1.6		0.00			0.00			
Woods, Fair Condition			1.2		0.00			0.00			
Woods, Good Condition			0.8		0.00			0.00			
Open Space, Poor Condition			1.0			0.00			0.00		
Open Space, Fair Condition			0.8			0.00			0.00		
Open Space, Good Condition			0.6			31.16			18.70		
Reforestation (in dedicated OS)			0.6			0.00			0.00		
Impervious			21.2			11.94			253.13		
SITE NITROGEN LOADING RATE	(lbs/ac/yr)=					6.31					
Nitrogen Lo	ad (lbs/yr)=					271.82					
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_We	ndell Only=					116.66					
	Site Nitroge	en Loading) Data For E	xpansion	s Only						
			Existing					New			
Impervious(acres)=			NA					NA			
"Expansion Area" (acres=)											
Nitrogen Load (lbs/yr)=		NA				NA					
SITE NITROGEN LOADING RATE (lbs/ac/yr)=		NA						NA			
Total Site loading rate (lbs/ac/yr)											
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)=					NA	λ					

Weavers Point Subdivision

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA1 Site Acreage=				12.1	0						
DA1 Off-Site Acreage=											
Total Required Storage Volume for Site				N 1/A							
TCN Requirement (ft ³)=				N/A							
Total Required Storage Volume for DA1 1" Rainfall for High Density (ft ³)=		1		11,344							
Will site use underground detention/cistern?	No	Enter % of the year water will be reused=		0%					nation/details te water usa		
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA				1			-1			
	HSG		DA1(a) Ac) Off-site		DA1(b) Ac) Off-site		DA1(c) Ac) Off-site		DA1(d) (c) Off-site		DA1(e) Ac) Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition		3.90		5.40							
Reforestation (in dedicated OS)		0.50		0.40							
		0.40		0.70							
Impervious Sub-DA1(a) BMP(s)		2.10		0.70							
						Browidad		1			
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fr		Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)	
SCM 1	Wet Detention Basin							25%	46.86	11.72	48
								0%	35.15	0.00	
			4,491		12,203			0%	35.15	0.00	
								0%	35.15	0.00	
								0%	35.15	0.00	
Tot	al Nitrogen remaining leaving the subbasin (Ibs):					34	i.15	0,0	00.10	0.00	
Sub-DA1(b) BMP(s)	ar har ogen remaining reaving the subbasin (153).										
	If Sub-DA1(b) is connected to upstream subbasin(s), e nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi		Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	18.08	0.00	
								0%	18.08	0.00	
			2,260					0%	18.08	0.00	
		1						0%	18.08	0.00	
								0%	18.08	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):					18	.08				
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided olume that wandown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	

Weavers Point Subdivision

DRAINAGE AREA 1 BMP CALCULATIONS

NORTH CAROLINA							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):					1	
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will drawdown 2-5 days (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
		A1 BMP SUMMARY					
	Total Volume Treated (ft ³)=		12,203				
1	Nitrogen Mitigated(lbs)=		11.72				
1-year, 24-hour storm			00.044				
	Post BMP Volume of Runoff (ft ³) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) =		36,641				
	Post BMP (1-year)= Post BMP CN(1-year)=		74				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		8.330				
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3)(2-year)=		56,548				
	Post BMP Runoff (inches) = Q*(2-year)=		1.29				
	Post BMP CN _(2-year) =		75				
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³)(10-year)=		158,975				
	Post BMP Runoff (inches) = Q*(10-year)=		3.62				
	Post BMP CN(10-year)=		98				
	Post BMP Peak Discharge (cfs)= Q _(10-year) =		31.870				

Weavers Point Subdivision

DRAINAGE AREA 2 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS											
DA2 Site Acreage=				26.5	0							
DA2 Off-Site Acreage=												
Total Required Storage Volume				N/A	1							
TCN Requirement (ft ³)= Total Required Storage Volume for DA2												
1" Rainfall for High Density (ft3)=				30,61	319							
Will site use underground detention/cistern?	No	Enter % of the year water will be reused=		0%					nation/details te water usa			
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA							-				
	HSG	Sub-DA2(a) (Ac) Site Off-site			DA2(b) Sub-DA2 c) (Ac) Off-site Site				DA2(d) Ac) Off-site		b-DA2(e) (Ac) Off-site	
Pasture												
Woods, Poor Condition												
Woods, Fair Condition												
Woods, Good Condition												
Open Space, Poor Condition												
Open Space, Fair Condition												
Open Space, Good Condition		14.90		3.70								
Reforestation (in dedicated OS)												
Impervious		7.40		0.50								
Sub-DA1(a) BMP(s)					и			- F	1	1	1	
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fl		Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)	
SCM 2	Wet Detention Basin							25%	165.82	41.46	48	
					32,020			0%	124.37	0.00		
			24,392					0%	124.37	0.00		
									124.37	0.00		
								0%	124.37	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):					12	4.37					
Sub-DA1(b) BMP(s)												
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):				1				P	P	I	
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fl		Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)	
								0%	12.82	0.00		
								0%	12.82	0.00		
			1,021					0%	12.82	0.00		
								0%	12.82	0.00		
								0%	12.82	0.00		
	al Nitrogen remaining leaving the subbasin (lbs):					12	2.82					
Sub-DA1 (c) BMP(s)												
enter ti	If Sub-DA1(c) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):				1				1	1	I	
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fl			Provided /olume that v awdown 2-5 o (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)	
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):											

Weavers Point Subdivision

DRAINAGE AREA 2 BMP CALCULATIONS

NORTH CAROLINA								
Sub-DA1(d) BMP(s)								
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):							
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will drawdown 2-5 days (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)	
				0%	0.00	0.00		
				0%	0.00	0.00		
				0%	0.00	0.00		
				0%	0.00	0.00		
				0%	0.00	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):							
Sub-DA1(e) BMP(s)								
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):							
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)	
				0%	0.00	0.00		
				0%	0.00	0.00		
				0%	0.00	0.00		
				0%	0.00	0.00		
				0%	0.00	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):							
	DA	A2 BMP SUMMARY						
	Total Volume Treated (ft ³)=		32,020					
	Nitrogen Mitigated(lbs)=		41.46					
1-year, 24-hour storm								
	Post BMP Volume of Runoff (ft ³) _(1-year) =		84,238					
	Post BMP Runoff (inches) = Q*(1-year)=		0.88					
	Post BMP CN _(1-year) =		75					
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		4.480					
2-year, 24-hour storm (LID)								
	Post BMP Volume of Runoff (ft3) _(2-year) =		129,494					
	Post BMP Runoff (inches) = Q* _(2-year) =		1.35					
	Post BMP CN _(2-year) =		76					
	Post BMP Peak Discharge (cfs)= Q _(2-year) =							
10-year, 24-hour storm (DIA)								
	Post BMP Volume of Runoff (ft ³) _(10-year) =		119,743					
	Post BMP Runoff (inches) = Q* _(10-year) =		1.24					
	Post BMP CN(10-year)=		74					
	Post BMP Peak Discharge (cfs)= Q _(10-year) =		31.070					

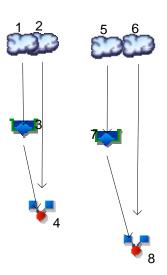
Weavers Point Subdivision

DA SITE SUMMARY BMP CALCULATIONS

BMP SUMMARY										
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development (1-year, 24-hour storm)										
Runoff (in)=Q* _{1-year} =	0.63	0.63	0.63	0.63	0.63					
Peak Flow (cfs)=Q _{1-year} =	year= 10.050 9.564 1.458 4.942 2.484									
Post-Development (1-year, 24-hour storm)										
Target Curve Number (TCN) =	NA									
Post BMP Runoff (inches) = Q* _(1-year) =	0.83	0.88	1.37	1.13	1.19					
Post BMP Peak Discharge (cfs)= Q _{1-year} =	8.330	4.480								
Post BMP CN _(1-year) =					75					
	Post-BM	IP Nitroge	n Loading							
TOTAL SITE NITROGEN MITIGATED (lbs)=	53.17									
SITE NITROGEN LOADING RATE (lbs/ac/yr)=	5.07									
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					63.4	9				

SCM #1 Drawdown Calculation

Calculate Skimmer Size							
Basin Volume in Cubic Feet	12,203 Cu.Ft	Skimmer Size	2.5 Inch				
Days to Drain*	2 Days	Orifice Radius	1.2 Inch[es]				
		Orifice Diameter	2.5 Inch[es]				
*In NC assume 3 days to drain							


SCM #2 Drawdown Calculation

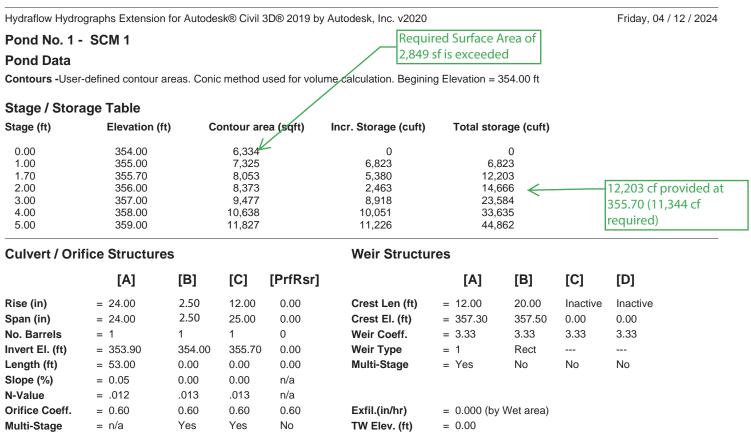
Basin Volume in Cubic Feet	32,020	Cu.Ft	Skimmer Size	4.0	Inch
Days to Drain*	2	Days	Orifice Radius	1.8	Inch[es]
			Orifice Diameter	3.6	Inch[es]
In NC assume 3 days to drain					

Appendix C Stormwater Routing CALCS

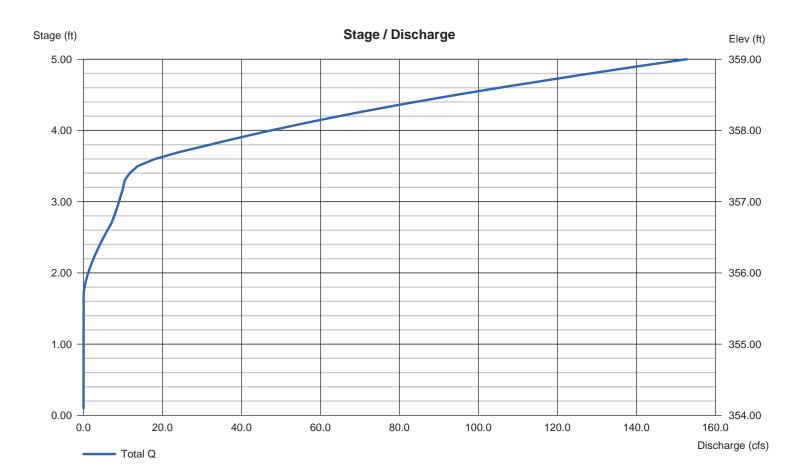
Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

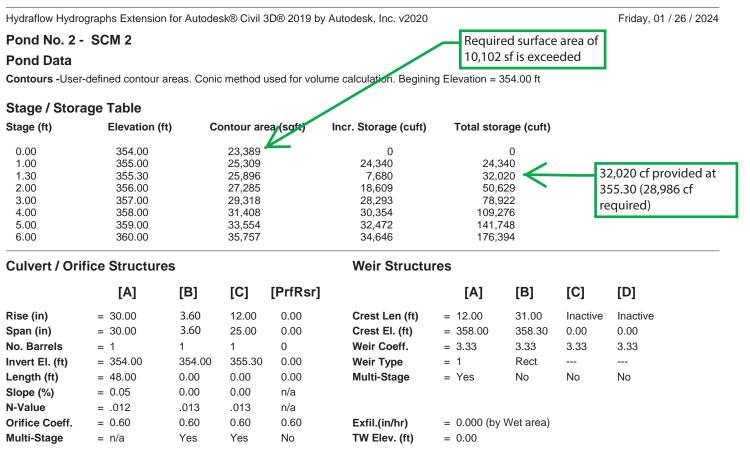
Legend


Hyd. Origin Description

1	SCS Runoff	DP #1 Post-Dev to SCM
2	SCS Runoff	DP #1 Post-Development Bypass
3	Reservoir	SCM 1
4	Combine	DP #1 - Total Post-Dev Flow
5	SCS Runoff	DP #2 Post-Dev to SCM
6	SCS Runoff	DP #2 Post-Dev Bypass
7	Reservoir	SCM #2


8 Combine DP #2 Total Post-Dev Flow

Project: FDCWP9 HYDROGRAPHS.gpw

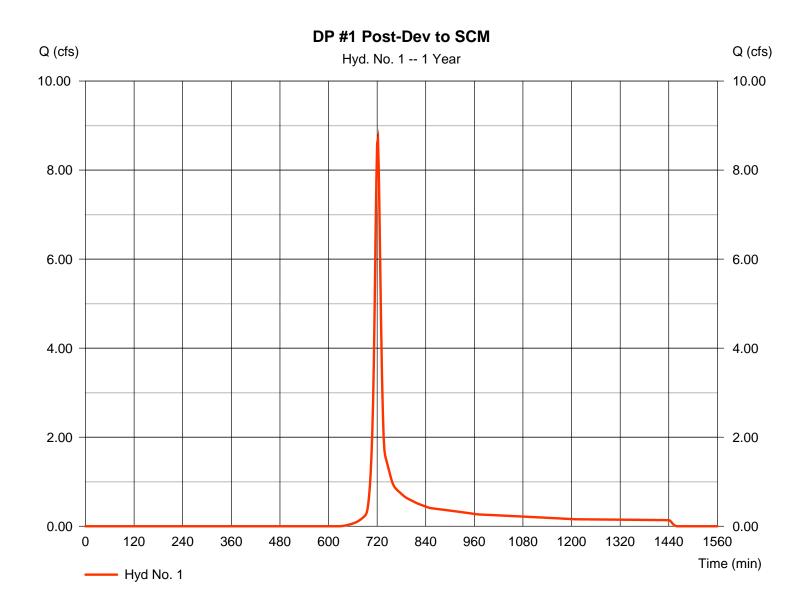

Pond Report

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Pond Report

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	354.00	0.00	0.00	0.00		0.00	0.00					0.000
1.00	24,340	355.00	0.10 oc	0.09 ic	0.00		0.00	0.00					0.095
1.30	32,020	355.30	0.11 oc	0.11 ic	0.00		0.00	0.00					0.110
2.00	50,629	356.00	3.47 oc	0.05 ic	3.41 ic		0.00	0.00					3.459
3.00	78,922	357.00	6.92 oc	0.07 ic	6.85 ic		0.00	0.00					6.920
4.00	109,276	358.00	11.80 oc	0.12 ic	11.68 ic		0.00	0.00					11.80
5.00	141,748	359.00	40.93 oc	0.07 ic	7.09 ic		33.77 s	60.46					101.39
6.00	176,394	360.00	50.75 ic	0.04 ic	3.74 ic		46.97 s	228.81					279.55


Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

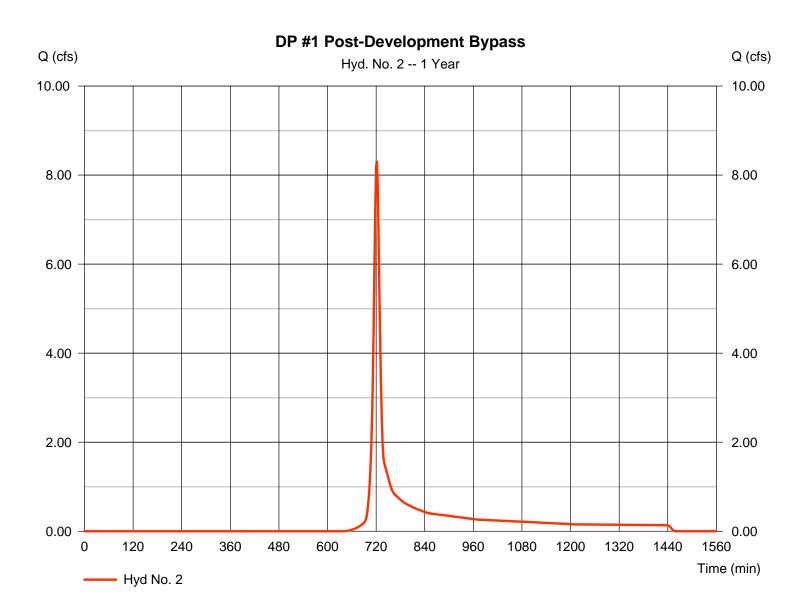
Hyd. No. 1

DP #1 Post-Dev to SCM

Hydrograph type	= SCS Runoff	Peak discharge	= 8.693 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 22,984 cuft
Drainage area	= 6.000 ac	Curve number	= 78
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Friday, 01 / 26 / 2024

Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

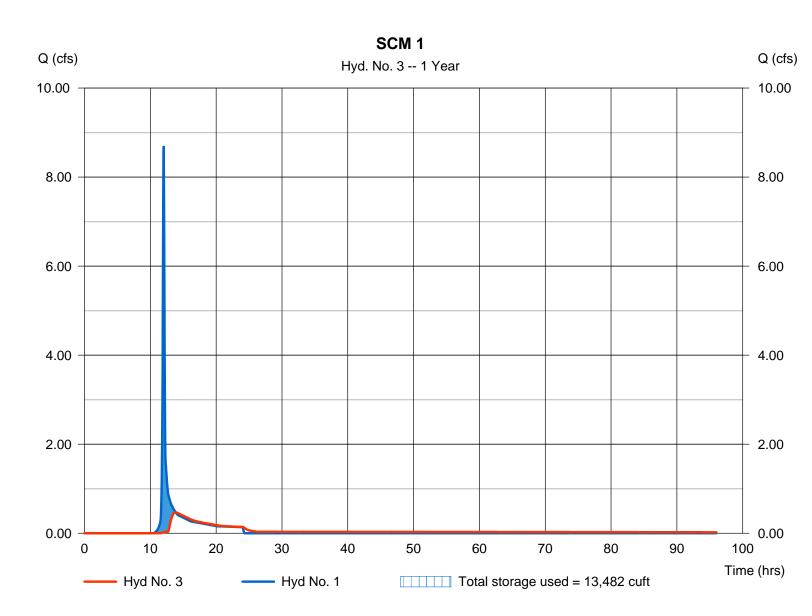
DP #1 Post-Development Bypass

= SCS Runoff	Peak discharge	= 8.319 cfs
= 1 yrs	Time to peak	= 722 min
= 2 min	Hyd. volume	= 22,114 cuft
= 6.100 ac	Curve number	= 77*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 10.80 min
= 2.85 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 1 yrs = 2 min = 6.100 ac = 0.0 % = TR55 = 2.85 in	= 1 yrsTime to peak= 2 minHyd. volume= 6.100 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 2.85 inDistribution

* Composite (Area/CN) = [(5.400 x 74) + (0.700 x 98)] / 6.100

Friday, 01 / 26 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

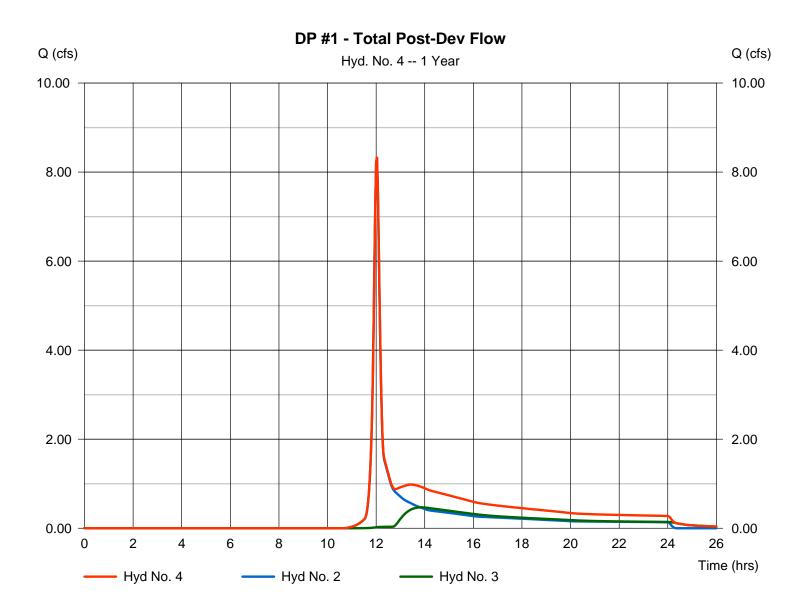

Friday, 04 / 12 / 2024

Hyd. No. 3

SCM 1

Hydrograph type	 Reservoir 1 yrs 2 min 1 - DP #1 Post-Dev to SCM 	Peak discharge	= 0.469 cfs
Storm frequency		Time to peak	= 13.87 hrs
Time interval		Hyd. volume	= 17,847 cuft
Inflow hyd. No.		Max. Elevation	= 355.86 ft
Reservoir name	= SCM 1	Max. Storage	= 13,482 cuft

Storage Indication method used.

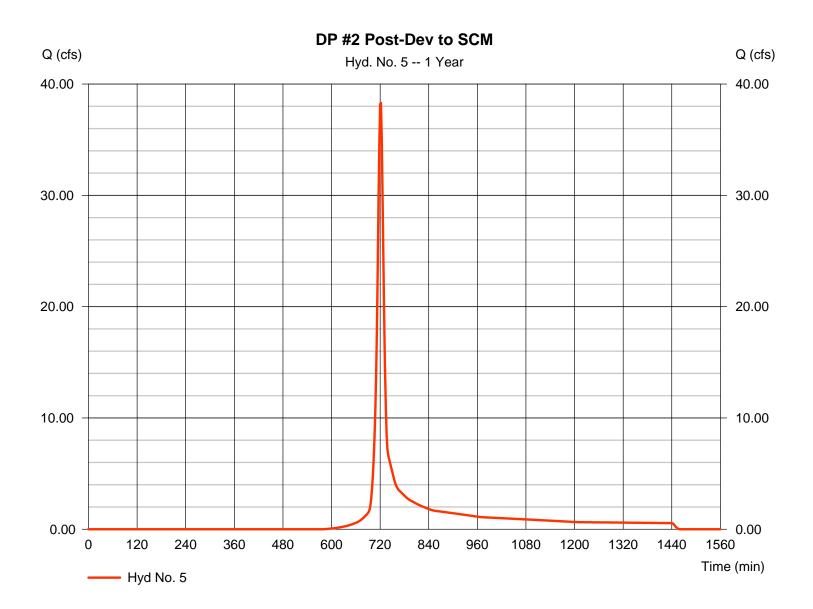


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

DP #1 - Total Post-Dev Flow

Hydrograph type Storm frequency	= Combine = 1 yrs	Peak discharge Time to peak	= 8.343 cfs = 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 39,961 cuft
Inflow hyds.	= 2, 3	Contrib. drain. area	= 6.100 ac

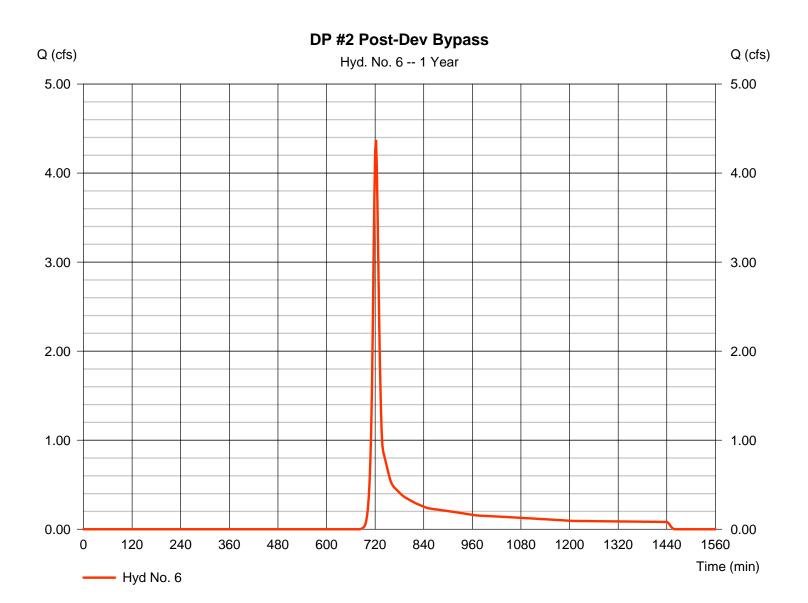

Friday, 04 / 12 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

DP #2 Post-Dev to SCM

Hydrograph type	= SCS Runoff	Peak discharge	= 38.24 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 100,115 cuft
Drainage area	= 22.300 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

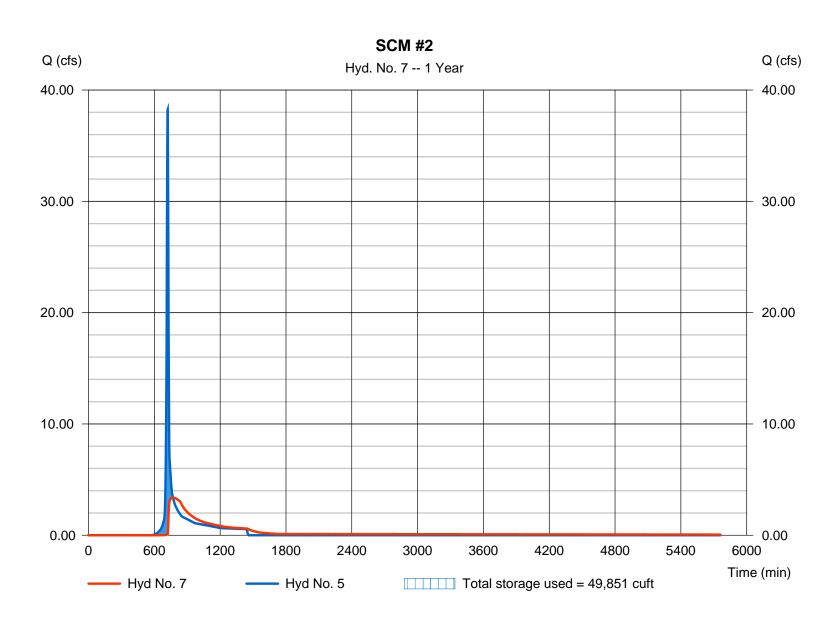
Hyd. No. 6

DP #2 Post-Dev Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 4.373 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 12,053 cuft
Drainage area	= 4.200 ac	Curve number	= 73*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.70 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.700 x 70) + (0.500 x 98)] / 4.200

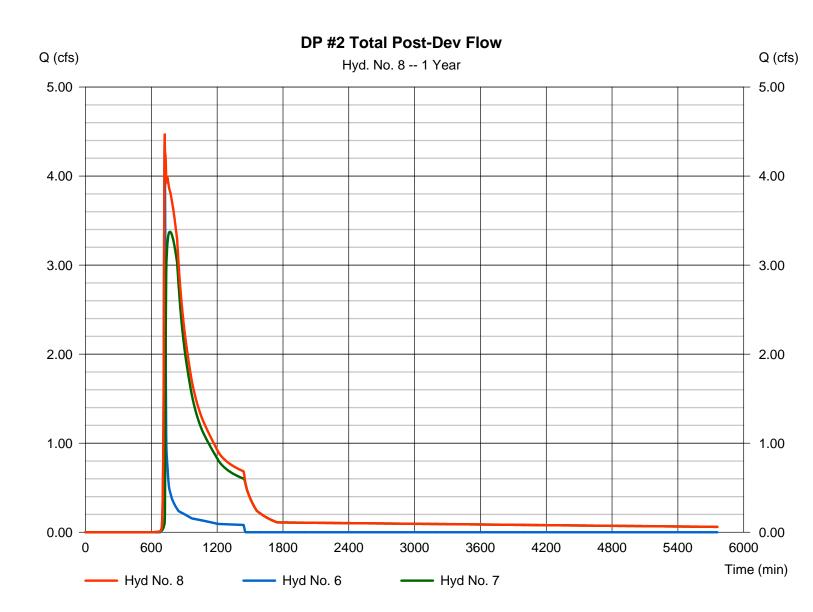
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Friday, 01 / 26 / 2024

Hyd. No. 7

SCM #2

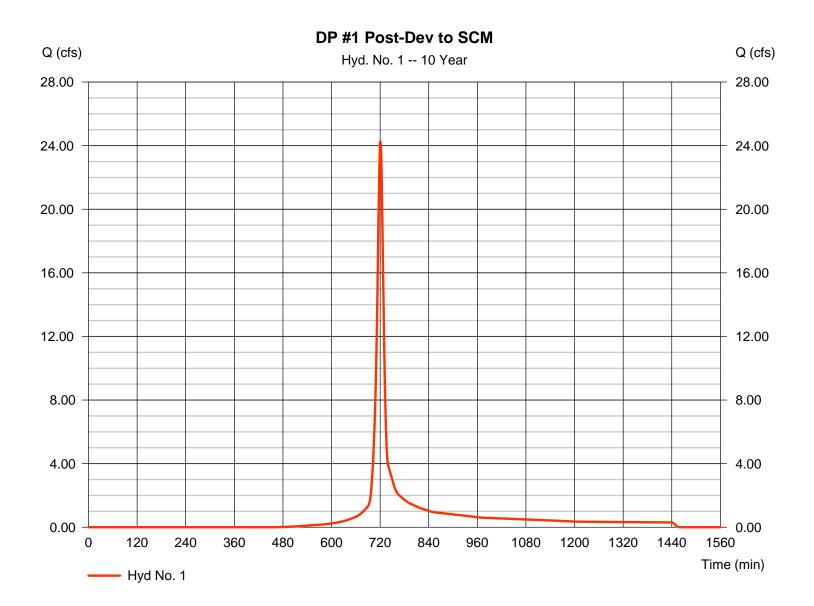
Hydrograph type	 Reservoir 1 yrs 2 min 	Peak discharge	= 3.374 cfs
Storm frequency		Time to peak	= 770 min
Time interval		Hyd. volume	= 88,619 cuft
Inflow hyd. No.	= 5 - DP #2 Post-Dev to SCM= SCM 2	Max. Elevation	= 355.97 ft
Reservoir name		Max. Storage	= 49,851 cuft


Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

DP #2 Total Post-Dev Flow

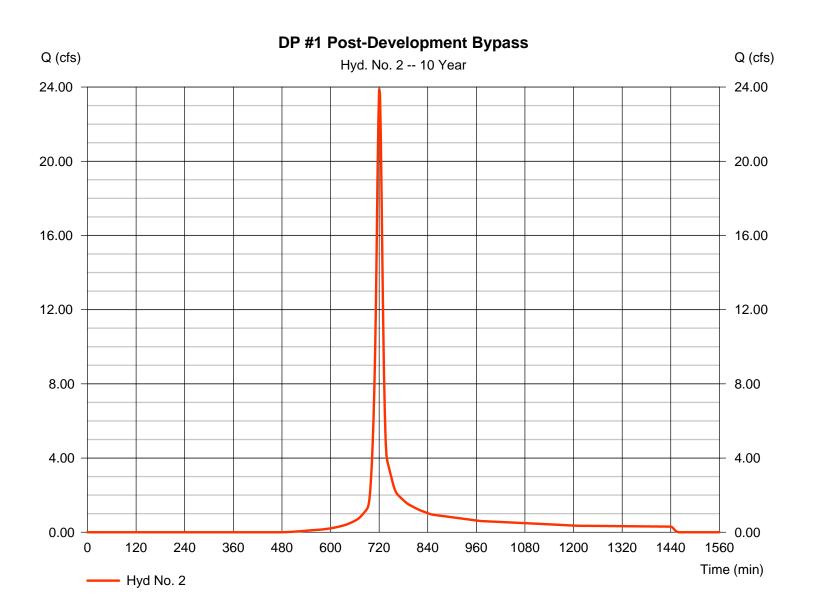


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

DP #1 Post-Dev to SCM

Hydrograph type	= SCS Runoff	Peak discharge	= 24.30 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 63,009 cuft
Drainage area	= 6.000 ac	Curve number	= 78
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 5.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

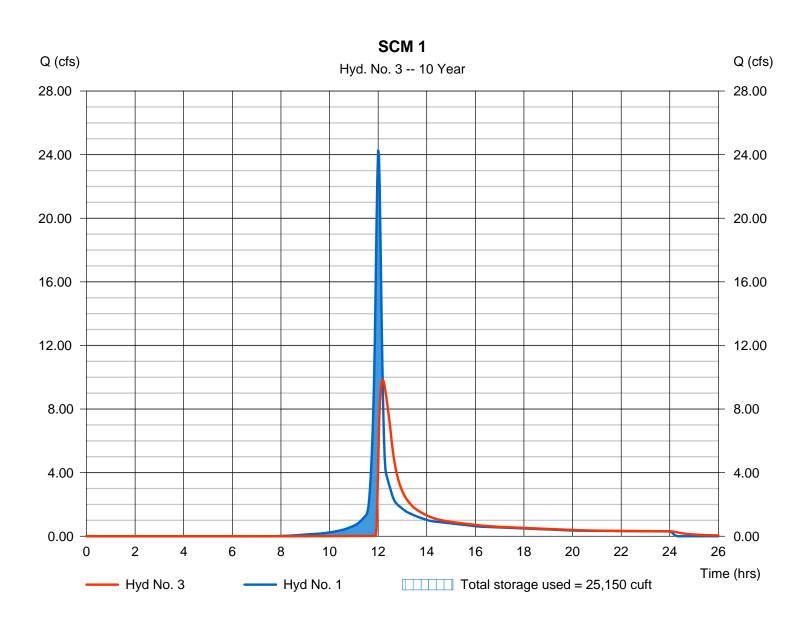
Hyd. No. 2

DP #1 Post-Development Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 23.92 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 62,003 cuft
Drainage area	= 6.100 ac	Curve number	= 77*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.80 min
Total precip.	= 5.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(5.400 x 74) + (0.700 x 98)] / 6.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

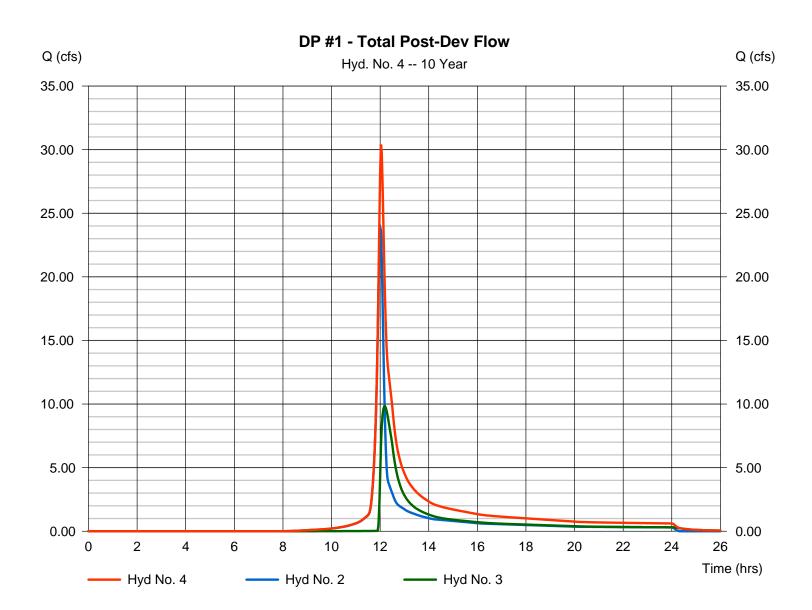

Friday, 04 / 12 / 2024

Hyd. No. 3

SCM 1

Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	 Reservoir 10 yrs 2 min 1 - DP #1 Post-Dev to SCM SCM 1 	Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage	 9.827 cfs 12.20 hrs 57,826 cuft 357.16 ft 25,150 cuft
Reservoir name	= SCM 1	Max. Storage	= 25,150 cuft

Storage Indication method used.

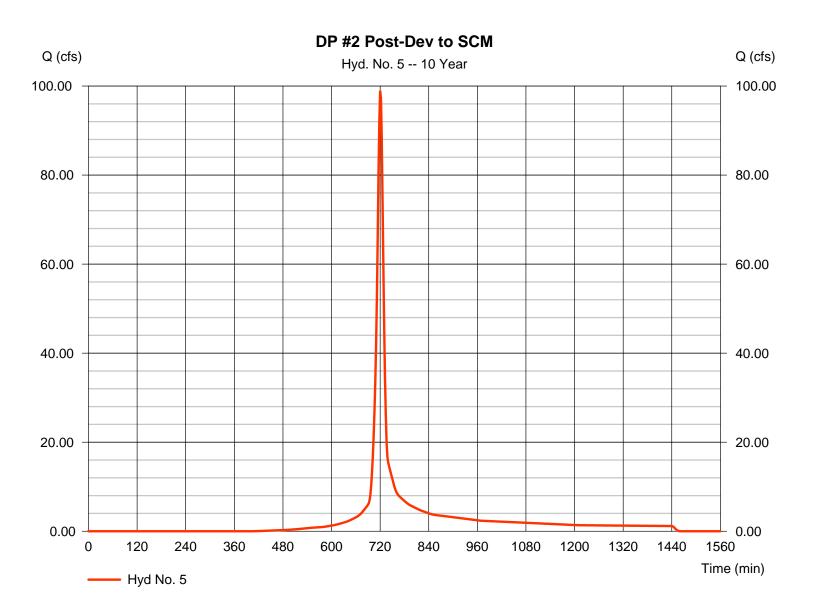


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

DP #1 - Total Post-Dev Flow

Hydrograph type Storm frequency Time interval Inflow hyds.	 = Combine = 10 yrs = 2 min = 2, 3 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 30.41 cfs = 12.03 hrs = 119,830 cuft = 6.100 ac
inited Hydel	- 2, 0		- 0.100 40

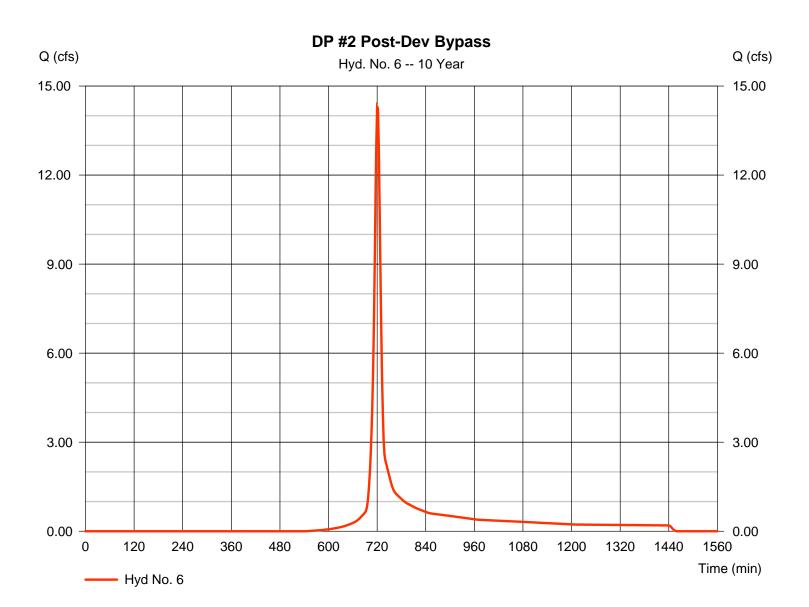

Friday, 04 / 12 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

DP #2 Post-Dev to SCM

Hydrograph type	= SCS Runoff	Peak discharge	= 98.92 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 257,342 cuft
Drainage area	= 22.300 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 5.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

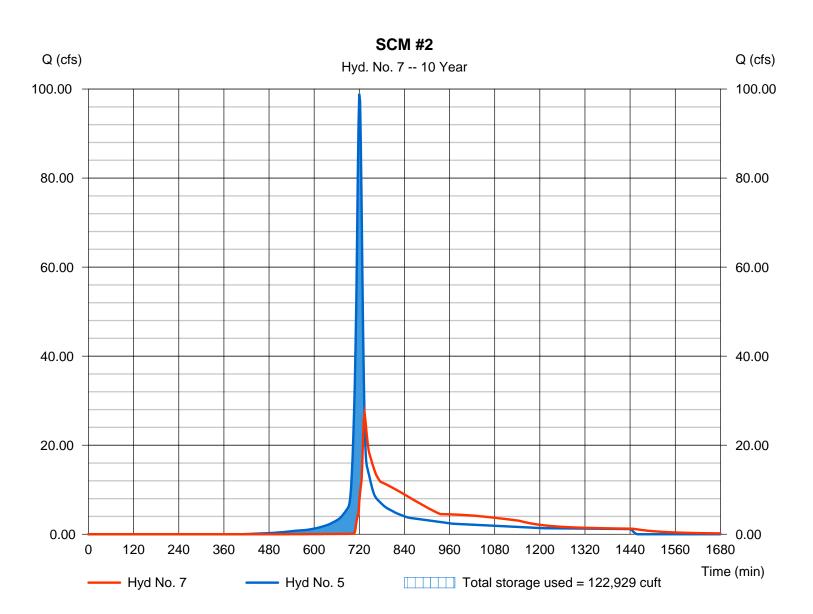
Hyd. No. 6

DP #2 Post-Dev Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 14.30 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 37,215 cuft
Drainage area	= 4.200 ac	Curve number	= 73*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.70 min
Total precip.	= 5.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.700 x 70) + (0.500 x 98)] / 4.200

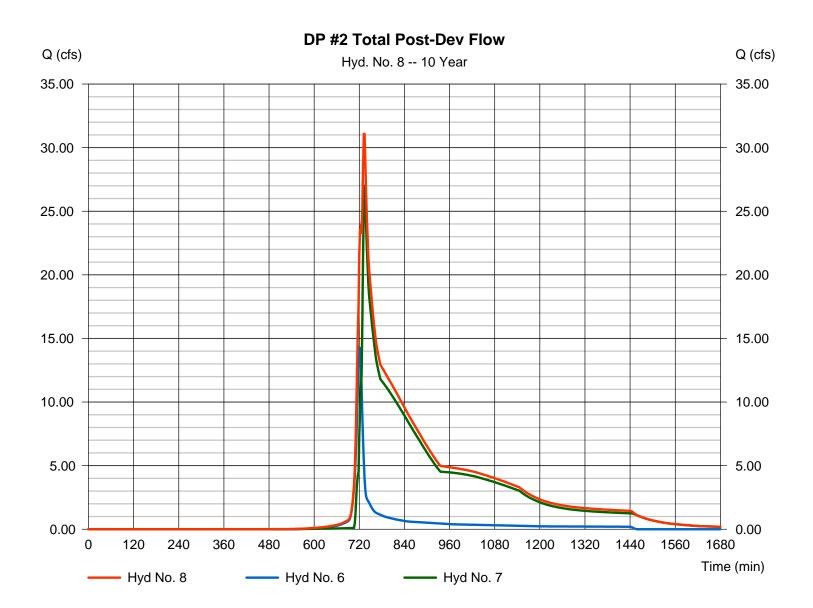
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Friday, 01 / 26 / 2024

Hyd. No. 7

SCM #2

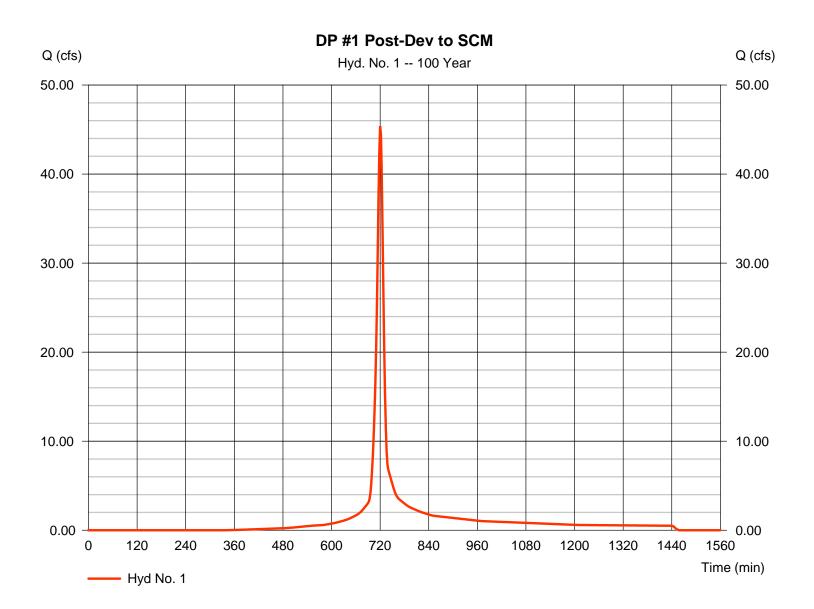
Hydrograph type	Reservoir10 yrs	Peak discharge	= 27.08 cfs
Storm frequency		Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 245,606 cuft
Inflow hyd. No.	= 5 - DP #2 Post-Dev to SCM	Max. Elevation	= 358.42 ft
Reservoir name	= SCM 2	Max. Storage	= 122,929 cuft


Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

DP #2 Total Post-Dev Flow

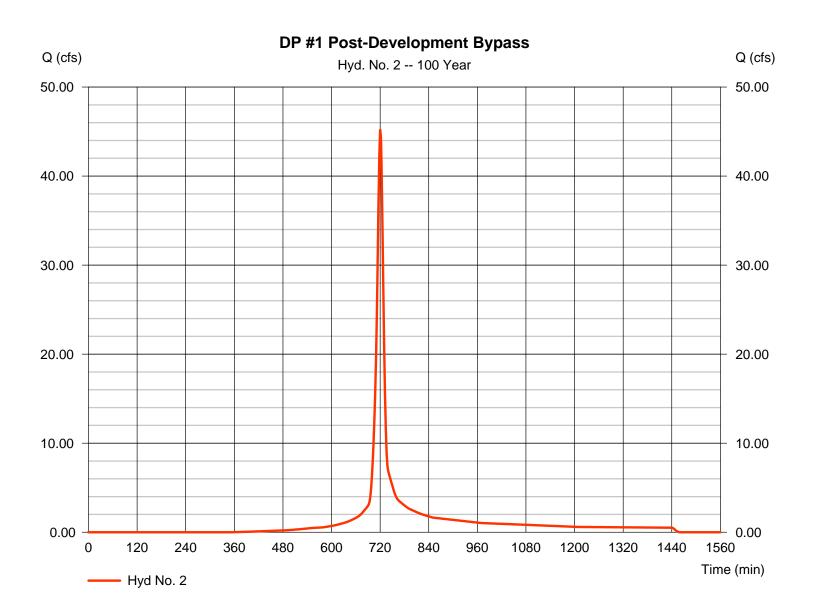


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

DP #1 Post-Dev to SCM

Hydrograph type	= SCS Runoff	Peak discharge	= 45.38 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 119,219 cuft
Drainage area	= 6.000 ac	Curve number	= 78
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 7.91 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

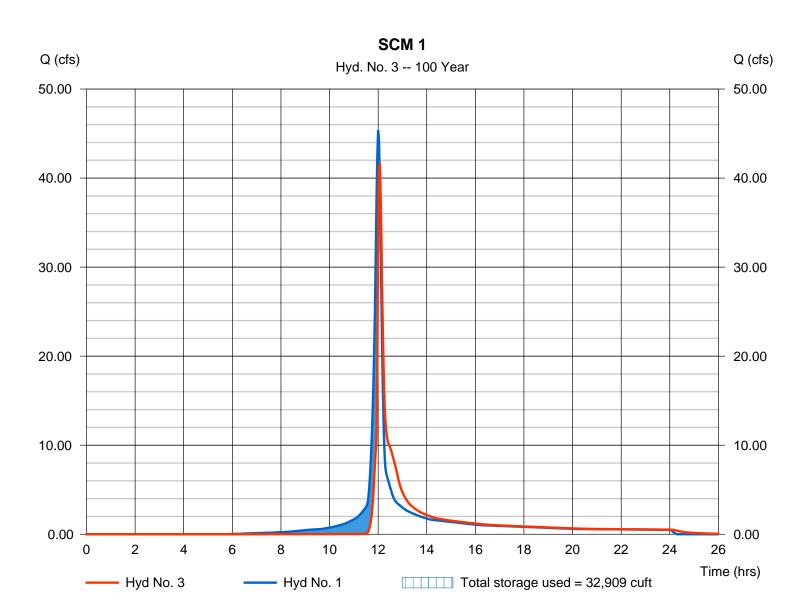
Hyd. No. 2

DP #1 Post-Development Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 45.25 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 118,556 cuft
Drainage area	= 6.100 ac	Curve number	= 77*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.80 min
Total precip.	= 7.91 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(5.400 x 74) + (0.700 x 98)] / 6.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

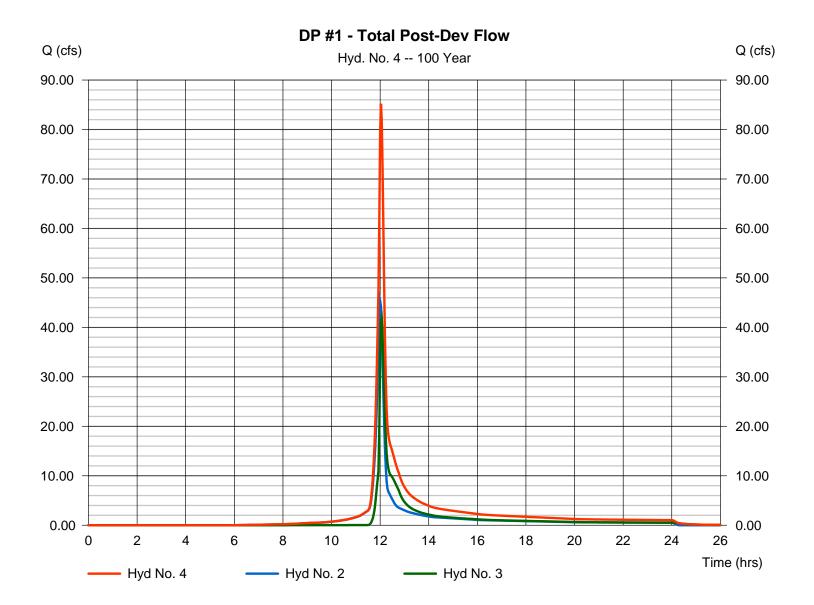

Friday, 04 / 12 / 2024

Hyd. No. 3

SCM 1

Hydrograph type	 Reservoir 100 yrs 2 min 1 - DP #1 Post-Dev to SCM SCM 1 	Peak discharge	= 41.71 cfs
Storm frequency		Time to peak	= 12.07 hrs
Time interval		Hyd. volume	= 114,012 cuft
Inflow hyd. No.		Max. Elevation	= 357.94 ft
Reservoir name		Max. Storage	= 32,909 cuft
Reservoir name	= SCM 1	Max. Storage	= 32,909 cuft

Storage Indication method used.

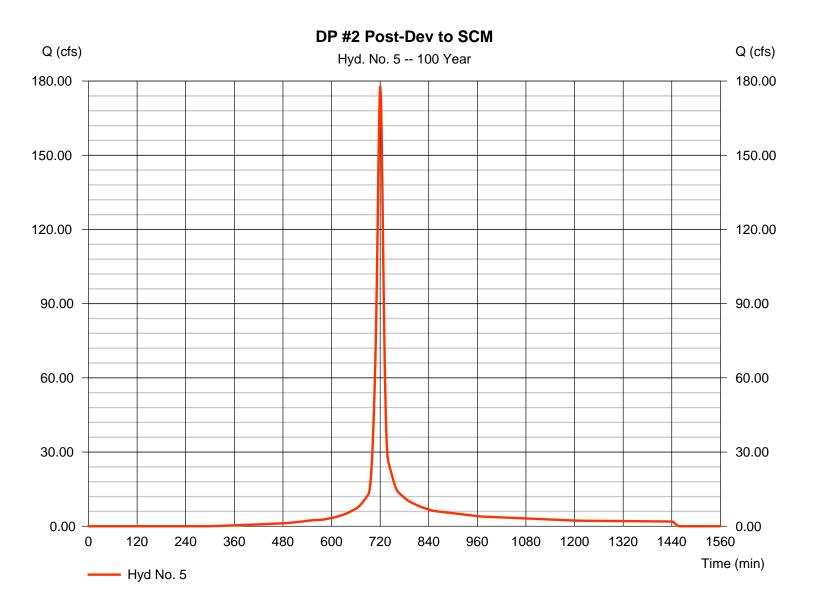


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

DP #1 - Total Post-Dev Flow

Hydrograph type	= Combine	Peak discharge	 85.20 cfs 12.03 hrs 232,568 cuft 6.100 ac
Storm frequency	= 100 yrs	Time to peak	
Time interval	= 2 min	Hyd. volume	
Inflow hyds.	= 2, 3	Contrib. drain. area	

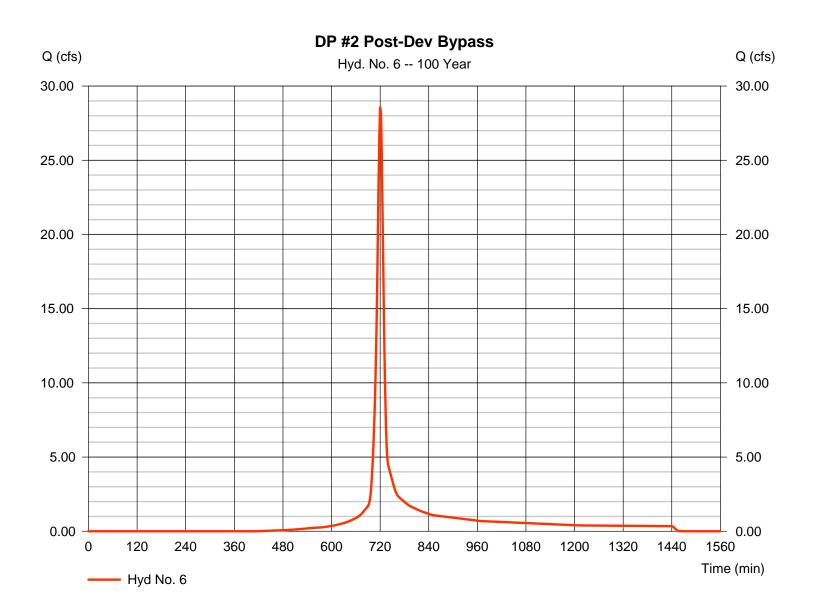

Friday, 04 / 12 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

DP #2 Post-Dev to SCM

Hydrograph type	= SCS Runoff	Peak discharge	= 178.01 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 472,273 cuft
Drainage area	= 22.300 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 7.91 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

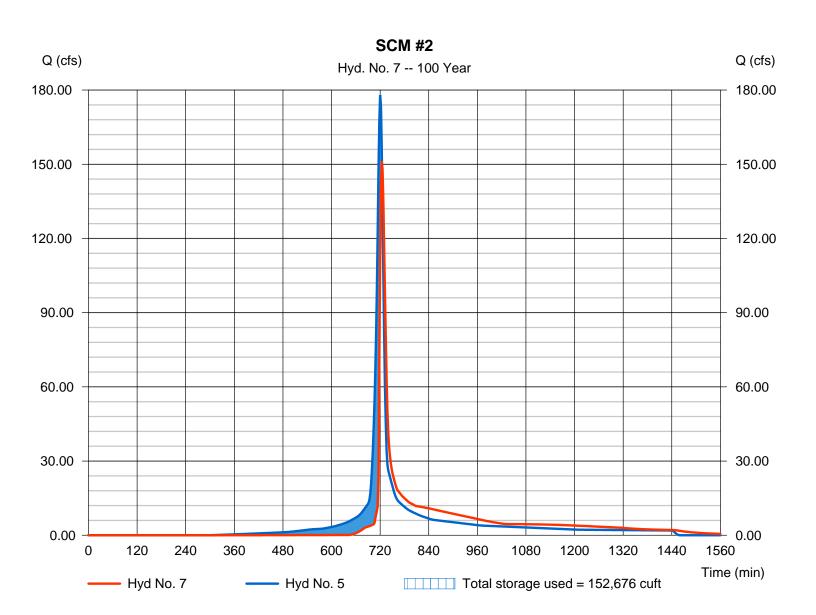
Hyd. No. 6

DP #2 Post-Dev Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 28.60 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 74,371 cuft
Drainage area	= 4.200 ac	Curve number	= 73*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.70 min
Total precip.	= 7.91 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.700 x 70) + (0.500 x 98)] / 4.200

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

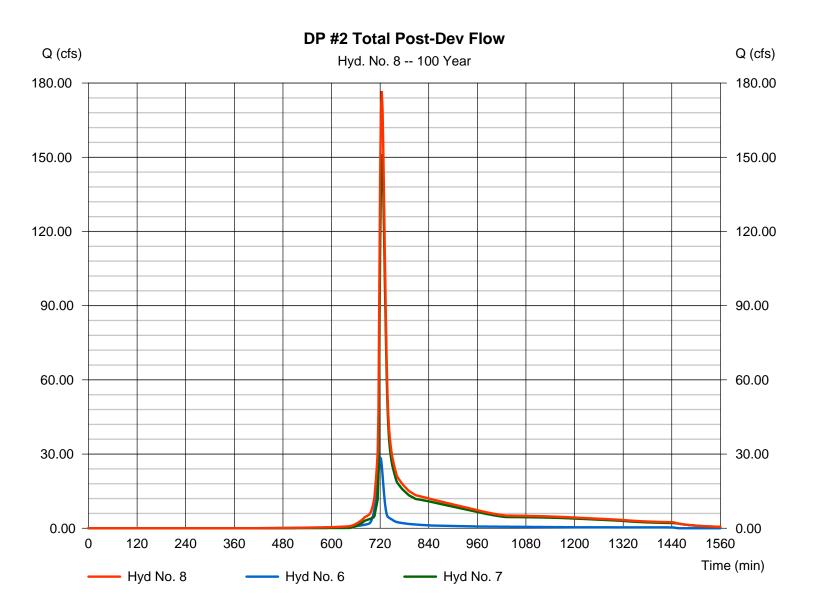

Friday, 01 / 26 / 2024

Hyd. No. 7

SCM #2

Hydrograph type Storm frequency	Reservoir100 yrs	Peak discharge Time to peak	= 151.28 cfs = 724 min
Time interval	= 2 min	Hyd. volume	= 460,400 cuft
Inflow hyd. No. Reservoir name	= 5 - DP #2 Post-Dev to SCM= SCM 2	Max. Elevation Max. Storage	= 359.32 ft= 152,676 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

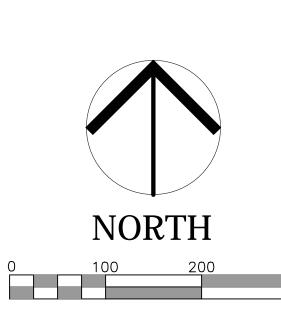
Hyd. No. 8

DP #2 Total Post-Dev Flow

Hydrograph type	= Combine	Peak discharge	= 176.72 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 534,772 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 4.200 ac

Appendix D SCM Drainage Area Map

|--|


- 1. ALL MATERIALS AND METHODS OF CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE TOWN OF ZEBULON AND THE STATE OF NORTH CAROLINA STANDARDS AND SPECIFICATIONS.
- CONTRACTOR SHALL HAVE NORTH CAROLINA ONE CALL (1-800-632-4949) LOCATE ALL EXISTING UTILITIES PRIOR TO BEGINNING CONSTRUCTION.
- CONTRACTOR SHALL VERIFY THE LOCATION AND DEPTH OF ALL EXISTING UTILITIES AND NOTIFY THE ENGINEER OF ANY DISCREPANCIES OR CONFLICTS PRIOR TO BEGINNING CONSTRUCTION.
- 4. CONTRACTOR IS RESPONSIBLE FOR REMOVING OR RELOCATING ALL UTILITIES IN CONFLICT WITH NEW CONSTRUCTION. CONTRACTOR SHALL COORDINATE WITH UTILITY COMPANIES PRIOR TO DISTURBANCE.

8522–204 SIX FORKS ROAD RALEIGH, NORTH CAROLINA 27615 919.845.7600 PHONE 919.845.7703 FAX ENGR. FIRM LICENSE NO. F-0843

PRELIMINARY NOT FOR CONSTRUCTION

RDY FAMILY, LLC PROPERTY	۵
PURDY FAMIL	2620 ZEBULON RD ZEBULON, NC
ISSUED: PR	
REVISIONS:	
DRAWN BY: CHECKED BY:	-
PROJECT:	FDCWP9
	VELOPED E AREA MAP
DWG. NO.	DA.1

SCALE IN FEET

GENERAL NOTES

- 1. ALL MATERIALS AND METHODS OF CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE TOWN OF ZEBULON AND THE STATE OF NORTH CAROLINA STANDARDS AND SPECIFICATIONS.
- CONTRACTOR SHALL HAVE NORTH CAROLINA ONE CALL (1-800-632-4949) LOCATE ALL EXISTING UTILITIES PRIOR TO BEGINNING CONSTRUCTION.
- CONTRACTOR SHALL VERIFY THE LOCATION AND DEPTH OF ALL EXISTING UTILITIES AND NOTIFY THE ENGINEER OF ANY DISCREPANCIES OR CONFLICTS PRIOR TO BEGINNING CONSTRUCTION.
- 4. CONTRACTOR IS RESPONSIBLE FOR REMOVING OR RELOCATING ALL UTILITIES IN CONFLICT WITH NEW CONSTRUCTION. CONTRACTOR SHALL COORDINATE WITH UTILITY COMPANIES PRIOR TO DISTURBANCE.

PRELIMINARY NOT FOR CONSTRUCTION

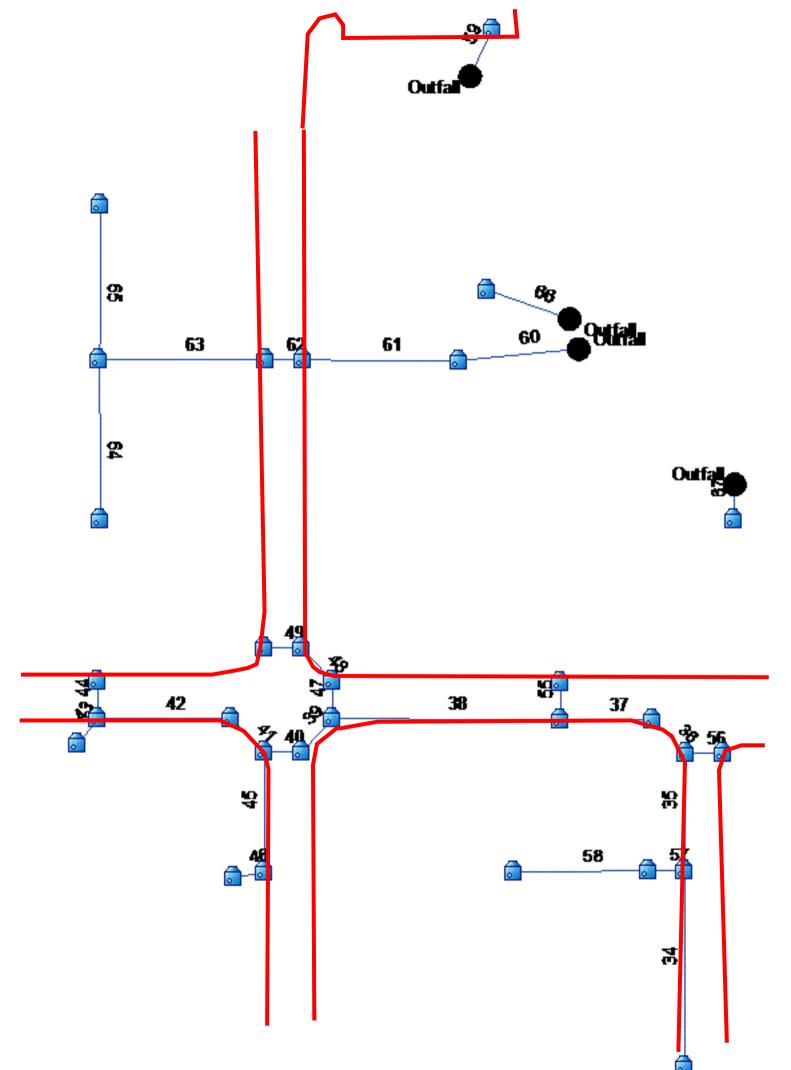
PURDY FAMILY, LLC PROPERTY	2620 ZEBULON RD ZEBULON, NC
ISSUED: PRO	DGRESS
DRAWN BY:	
CHECKED BY: PROJECT:	MLS
	AREA MAP

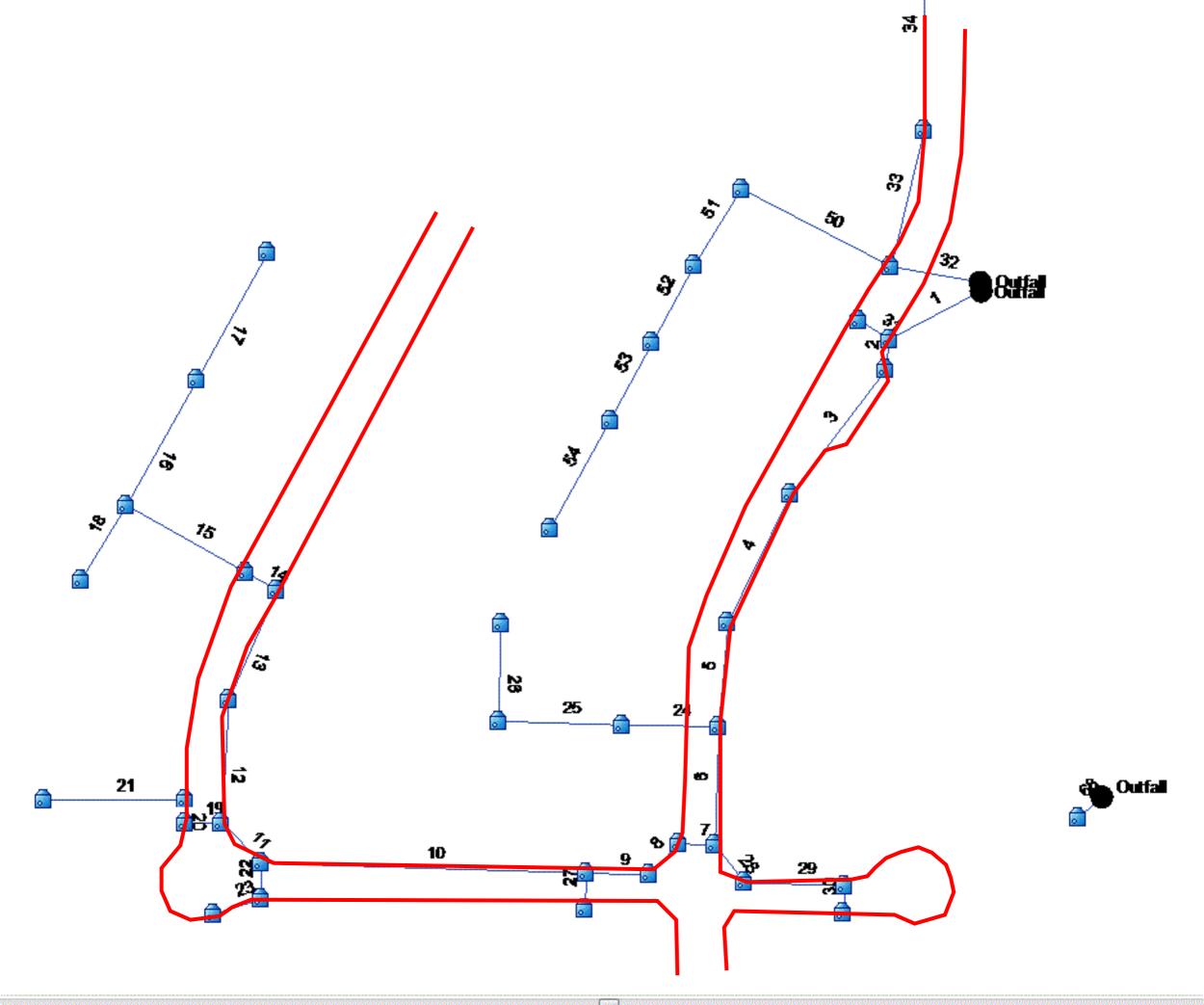
DWG. NO. **DA.2**

Appendix E Storm Sewer System Calculations

Statio			Drng A	Orng Area		Area x C		Тс		Rain	Total flow	Cap full	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Ri	Line ID	
_ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	100.180	0.32	9.84	0.60	0.19	4.97	5.0	12.1	5.6	28.01	28.97	6.82	30	0.50	354.00	354.50	355.92	356.48	359.00	361.22	Pipe - (177)
2	1	29.700		8.79	0.60	0.10	4.34	5.0	12.0	5.7	24.53	29.15	5.01	30	0.51	354.60	354.75	357.10	357.20	361.22	360.94	Pipe - (215)
3	2	151.727		8.62	0.60	0.10	4.23	5.0	11.5	5.7	24.32	29.78	5.11	30	0.53	354.85	355.65	357.42	357.88	360.94	363.12	Pipe - (215) (1
4	3	137.524		8.45	0.60	0.12	4.13	5.0	11.1	5.8	24.03	29.26	5.67	30	0.51	355.75	356.45	357.98	358.31	363.12	364.84	Pipe - (216)
5	4	101.546		8.25	0.60	0.11	4.01	5.0	10.8	5.9	23.54	30.18	6.16	30	0.54	356.55	357.10	358.55	358.77	364.84	366.19	Pipe - (217)
6	5	114.696	0.18	5.90	0.60	0.11	3.00	5.0	10.5	5.9	17.80	29.66	4.97	30	0.52	357.20	357.80	359.48	359.23	366.19	365.88	Pipe - (217) (*
7	6	35.000	0.04	4.94	0.60	0.02	2.42	5.0	10.4	6.0	14.43	17.10	6.10	24	0.57	357.90	358.10	359.31	359.51	365.88	365.88	Pipe - (201)
8	7	41.772	0.01	4.90	0.60	0.01	2.40	5.0	10.2	6.0	14.34	17.50	5.10	24	0.60	358.20	358.45	359.96	360.06	365.88	364.04	Pipe - (202)
9	8	60.592	0.54	4.89	0.60	0.32	2.39	5.0	10.0	6.0	14.41	15.92	4.86	24	0.50	358.55	358.85	360.40	360.58	364.04	363.69	Pipe - (203)
10	9	314.000	0.01	3.80	0.60	0.01	1.74	5.0	8.8	6.3	10.89	16.15	4.37	24	0.51	358.95	360.55	360.97	361.80	363.69	366.18	Pipe - (204)
11	10	54.835	0.17	3.53	0.60	0.10	1.58	5.0	8.6	6.3	9.96	16.73	4.59	24	0.55	360.65	360.95	362.23	362.08	366.18	365.47	Pipe - (205)
12	11	119.189	0.16	2.57	0.60	0.10	1.13	5.0	8.2	6.4	7.26	7.45	4.81	18	0.50	361.05	361.65	362.25	362.85	365.47	366.44	Pipe - (206)
13	12	115.936	0.52	2.41	0.60	0.31	1.04	5.0	7.8	6.5	6.75	7.55	4.58	18	0.52	361.75	362.35	362.99	363.45	366.44	367.68	Pipe - (207)
14	13	35.000	0.53	1.89	0.60	0.32	0.73	5.0	7.6	6.5	4.74	4.88	3.87	15	0.57	362.45	362.65	363.82	364.01	367.68	367.68	Pipe - (210)
15	14	131.967	0.39	1.36	0.30	0.12	0.41	5.0	6.8	6.7	2.75	4.70	2.71	15	0.53	362.75	363.45	364.04	364.28	367.68	365.80	Pipe - (233)
16	15	140.000	0.38	0.76	0.30	0.11	0.23	5.0	5.9	7.0	1.59	4.57	2.57	15	0.50	363.55	364.25	364.44	364.75	365.80	367.00	Pipe - (234)
17	16	140.088	0.38	0.38	0.30	0.11	0.11	5.0	5.0	7.2	0.82	4.56	2.53	15	0.50	364.35	365.05	364.78	365.41	367.00	368.50	Pipe - (235)
18	15	85.387	0.21	0.21	0.30	0.06	0.06	5.0	5.0	7.2	0.45	4.69	0.82	15	0.53	363.55	364.00	364.44	364.45	365.80	365.94	Pipe - (236)
19	11	35.000	0.04	0.79	0.60	0.02	0.34	5.0	6.0	6.9	2.37	4.88	3.07	15	0.57	361.05	361.25	362.08	361.87	365.47	365.47	Pipe - (211)
20	19	22.439	0.31	0.75	0.60	0.19	0.32	5.0	5.9	7.0	2.22	5.28	3.98	15	0.67	361.35	361.50	361.92	362.09	365.47	365.53	Pipe - (229)
21	20	136.590	0.44	0.44	0.30	0.13	0.13	5.0	5.0	7.2	0.95	6.54	2.55	15	1.02	361.60	363.00	362.09	363.38	365.53	0.81	Pipe - (230)
22	10	35.000	0.01	0.26	0.30	0.00	0.15	5.0	5.9	7.0	1.07	4.88	0.87	15	0.57	360.65	360.85	362.23	362.24	366.18	366.18	Pipe - (212)
Proie	ect File [.]	Weave	rs Point	Storm S	vstem.st	 m										Numbe	r of lines: 6	8		Run Da	te: 1/30/2	024

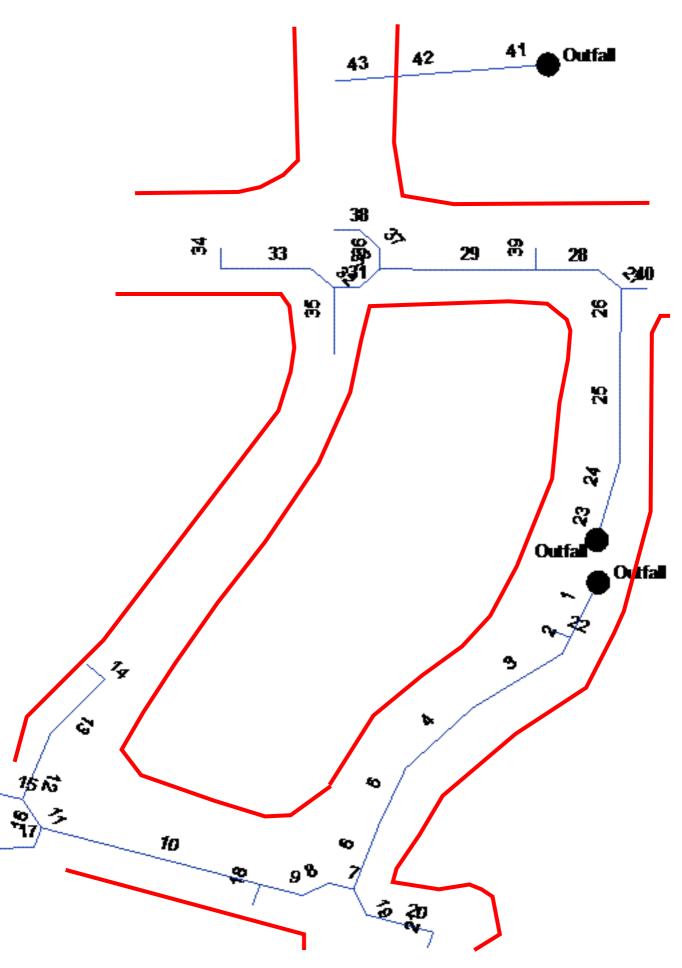
NOTES:Intensity = 105.70 / (Inlet time + 16.80) ^ 0.87; Return period =Yrs. 10 ; c = cir e = ellip b = box


Statio	n	Len	Drng A	Irea	Rnoff	Area	(C	Тс		Rain	Total	Сар	Vel	Pipe		Invert Elev		HGL Elev		Grnd / R	im Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
23	22	47.432	0.25	0.25	0.60	0.15	0.15	5.0	5.0	7.2	1.08	4.69	0.90	15	0.53	360.85	361.10	362.25	362.26	366.18	365.55	Pipe - (213)
24	5	93.087		2.17	0.30	0.10	0.91	5.0	6.2	6.9	6.25	8.07	3.54	18	0.59	357.20	357.75	359.48	359.81	366.19	362.00	Pipe - (244)
25	24	120.003		1.78	0.30	0.12	0.79	5.0	5.5	7.1	5.58	7.73	3.16	18	0.54	357.85	358.50	359.84	360.18	362.00	362.77	Pipe - (245)
26	25	94.039		0.85	0.60	0.20	0.73	5.0	5.0	7.2	3.68	4.71	3.00	15	0.53	358.60	359.10	360.33	360.64	362.77	363.27	Pipe - (246)
20	9	35.000		0.55	0.60	0.33	0.33	5.0	5.0	7.2	2.38	5.46	1.94	15	0.33	358.95	359.20	360.97	361.02	363.69	363.69	Pipe - (240)
28	6	46.293		0.78	0.60	0.01	0.33	5.0	5.6	7.0	3.29	5.20	2.76	15	0.65	357.90	358.20	359.23	359.33	365.88	363.97	Pipe - (197)
20		96.719		0.78	0.60	0.19	0.47	5.0	5.1	7.0	3.31	4.64	3.30	15	0.52	358.30	358.80	359.43	359.64	363.97	362.89	Pipe - (197)
29 30	20	26.000		0.45	0.60	0.19	0.40	5.0	5.0	7.2	3.31 1.95	5.66	2.93	15	0.52	359.00	359.20	359.86	359.64	362.89	362.89	Pipe - (198) Pipe - (199)
31	1	35.000		0.43	0.60	0.27	0.27	5.0	5.0	7.2	3.16	4.88	2.53	15	0.57	354.70	354.90	357.10	357.19	361.22	361.22	Pipe - (139)
32		87.008		9.34	0.60	0.44	3.76	5.0	9.0	6.2	23.39	31.09	6.77	30	0.57	354.00	354.50	355.67	356.15	356.00	361.70	Pipe - (179)
33	32	136.179		5.46	0.60	0.11	2.54	5.0	8.7	6.3	16.02	16.22	5.88	24	0.51	354.60	355.30	356.22	356.92	361.70	363.78	Pipe - (180)
34	33	181.813		5.28	0.60	0.12	2.43	5.0	8.1	6.4	15.63	15.91	5.69	24	0.50	355.40	356.30	357.06	357.90	363.78	365.49	Pipe - (181)
35	34	109.927		3.98	0.60	0.11	1.98	5.0	7.7	6.5	12.92	18.05	4.46	24	0.64	356.40	357.10	358.42	358.70	365.49	364.05	Pipe - (182)
36	35	43.841		3.62	0.30	0.00	1.77	5.0	7.6	6.6	11.58	18.71	4.79	24	0.68	357.20	357.50	359.06	358.72	364.05	363.43	Pipe - (183)
37	36	84.994		3.61	0.60	0.25	1.76	5.0	7.3	6.6	11.66	17.35	5.85	24	0.59	357.60	358.10	358.80	359.32	363.43	363.01	Pipe - (184)
38		213.262		2.78	0.60	0.04	1.27	5.0	6.6	6.8	8.59	16.24	4.95	24	0.52	358.20	359.30	359.32	360.34	363.01	364.93	Pipe - (184) (1
39	38	41.773		2.46	0.60	0.04	1.07	5.0	6.5	6.8	7.32	8.90	5.59	18	0.72	359.40	359.70	360.44	360.75	364.93	365.53	Pipe - (185)
40	39	35.000		2.40	0.60	0.05	1.04	5.0	6.4	6.8	7.11	7.94	5.08	18	0.57	359.80	360.00	360.91	361.11	365.53	365.53	Pipe - (186)
41	40	43.841		0.79	0.60	0.03	0.42	5.0	6.1	6.9	2.89	5.34	2.38	15	0.68	360.10	360.40	361.51	361.59	365.53	365.70	Pipe - (187)
42	41	124.078		0.74	0.60	0.14	0.39	5.0	5.4	7.1	2.75	4.67	2.98	15	0.52	360.50	361.15	361.65	361.89	365.70	365.32	Pipe - (188)
43	42	30.107		0.19	0.30	0.06	0.06	5.0	5.0	7.2	0.41	6.45	1.40	15	1.00	361.20	361.50	362.10	361.75	365.32	364.00	Pipe - (224)
44	42	35.000	0.32	0.32	0.60	0.19	0.19	5.0	5.0	7.2	1.39	4.88	2.45	15	0.57	361.25	361.45	362.10	361.92	365.32	365.32	Pipe - (189)
Proje	ct File:	Weave	rs Point	Storm S	ystem.st	m										Numbe	er of lines: 6	8		Run Da	te: 1/30/2	024

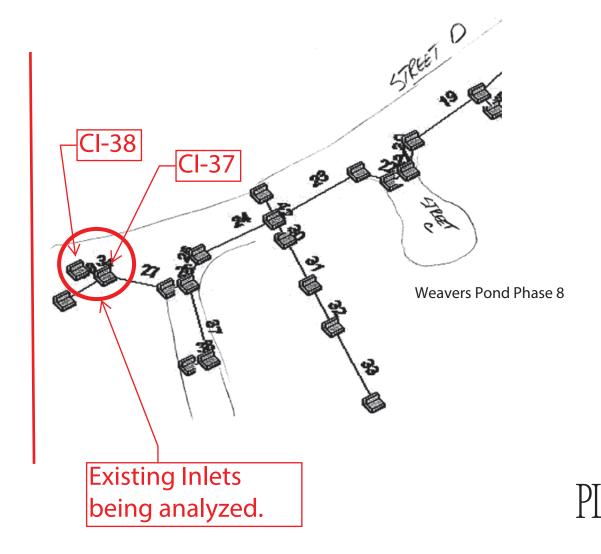

NOTES:Intensity = 105.70 / (Inlet time + 16.80) ^ 0.87; Return period =Yrs. 10 ; c = cir e = ellip b = box

Statio	n	Len Drng Area		Rnoff	Area x C		Тс	Тс		Total flow	Cap full	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Ri	Line ID		
Line	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
45	40	111.945	0.37	1.52	0.60	0.22	0.57	5.0	5.2	7.2	4.05	4.73	3.31	15	0.54	360.10	360.70	361.51	361.93	365.53	367.32	Pipe - (226)
45 46	40	28.495		1.52	0.30	0.22	0.35	5.0	5.2	7.2	4.05 2.49	5.41	2.08	15	0.54	360.80	361.00	362.09	362.13	367.32	365.00	
40 47	38	34.999		0.26	0.60	0.05	0.35	5.0	5.5	7.1	2.49	4.88	2.00	15	0.70	359.40	359.60	360.34	360.01	364.93	364.93	Pipe - (227) Pipe - (194)
47	47	41.774		0.20	0.60	0.05	0.10	5.0	5.3	7.1	0.77	5.47	2.11	15	0.37	359.70	360.00	360.02	360.34	364.93	365.34	Pipe - (194)
40 49	48	35.000		0.09	0.60	0.05	0.05	5.0	5.0	7.2	0.39	4.88	2.30	15	0.72	360.10	360.30	360.34	360.54	365.34	365.34	Pipe - (195)
50	32	163.483		3.70	0.30	0.42	1.11	5.0	7.0	6.7	7.41	7.79	4.27	18	0.55	354.60	355.50	356.15	356.89	361.70	359.60	Pipe - (190)
51	50	86.915		2.29	0.30	0.16	0.69	5.0	6.7	6.8	4.65	4.90	3.79	15	0.58	355.60	356.10	357.18	357.63	359.60	360.00	Pipe - (237)
52	51	85.211		1.75	0.30	0.15	0.53	5.0	6.2	6.9	3.62	4.95	2.96	15	0.59	356.20	356.70	357.66	357.91	360.00	361.00	Pipe - (238)
53	52	85.201		1.24	0.30	0.20	0.37	5.0	5.7	7.0	2.61	7.34	3.15	15	1.29	356.80	357.90	357.93	358.55	361.00	362.00	Pipe - (239)
54	53	120.577	0.56	0.56	0.30	0.17	0.17	5.0	5.0	7.2	1.21	5.88	2.78	15	0.83	358.00	359.00	358.55	359.43	362.00	363.00	Pipe - (240)
55	37	35.000	0.41	0.41	0.60	0.25	0.25	5.0	5.0	7.2	1.78	4.88	2.56	15	0.57	358.20	358.40	359.32	358.93	363.01	363.01	Pipe - (231)
56	35	35.000	0.18	0.18	0.60	0.11	0.11	5.0	5.0	7.2	0.78	4.88	0.64	15	0.57	357.20	357.40	359.06	359.06	364.05	364.05	Pipe - (193)
57	34	34.034	0.36	1.10	0.30	0.11	0.33	5.0	6.6	6.8	2.24	4.95	1.83	15	0.59	356.40	356.60	358.42	358.47	365.49	361.00	Pipe - (191)
58	57	124.744	0.74	0.74	0.30	0.22	0.22	5.0	5.0	7.2	1.60	4.84	1.33	15	0.56	356.70	357.40	358.47	358.54	361.00	360.00	Pipe - (228)
59	End	48.461	0.26	0.26	0.60	0.16	0.16	5.0	5.0	7.2	1.13	5.08	2.98	15	0.62	360.00	360.30	360.45	360.72	361.29	365.00	Pipe - (176)
60	End	112.189	0.01	3.68	0.30	0.00	1.42	5.0	7.2	6.6	9.40	16.54	5.04	24	0.53	354.00	354.60	355.21	355.69	360.44	359.00	Pipe - (172)
61	60	144.977	0.52	3.67	0.60	0.31	1.41	5.0	6.7	6.7	9.53	16.80	5.44	24	0.55	354.70	355.50	355.78	356.60	359.00	365.78	Pipe - (173)
62	61	35.000	0.52	3.15	0.60	0.31	1.10	5.0	6.6	6.8	7.46	7.94	5.11	18	0.57	355.60	355.80	356.76	356.96	365.78	365.78	Pipe - (174)
63	62	154.835	0.71	2.63	0.30	0.21	0.79	5.0	6.0	6.9	5.47	7.55	4.39	18	0.52	355.90	356.70	357.02	357.60	365.78	360.05	Pipe - (222)
64	63	148.949	1.25	1.25	0.30	0.38	0.38	5.0	5.0	7.2	2.71	4.73	3.03	15	0.54	356.80	357.60	357.98	358.30	360.05	361.00	Pipe - (223)
65	63	144.000	0.67	0.67	0.30	0.20	0.20	5.0	5.0	7.2	1.45	4.81	2.29	15	0.56	356.80	357.60	357.98	358.08	360.05	363.00	Pipe - (232)
66	End	81.000	0.88	0.88	0.30	0.26	0.26	5.0	5.0	7.2	1.91	7.17	3.86	15	1.23	354.00	355.00	354.51	355.55	355.94	356.94	Pipe - (243)
Proie	ct File	Weave	rs Point	Storm S	vstem st	 m										Number	r of lines: 6	38		Run Da	024	

NOTES:Intensity = 105.70 / (Inlet time + 16.80) ^ 0.87; Return period =Yrs. 10 ; c = cir e = ellip b = box


Statio	n	Len	Drng A	rea	coeff	Area x	C	Тс			Total flow	Cap full	Vel	Pipe		Invert El	ev	HGL Elev		Grnd / Ri	Line ID				
.ine	То		Incr	Total	coerr	Incr	Total	Inlet	Syst	-(I)	now	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up				
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)				
7	End	32.607	0.40	0.40	0.30	0.12	0.12	5.0	5.0	7.2	0.87	5.06	2.65	15	0.61	353.80	354.00	354.22	354.36	356.00	356.00	Pipe - (225)			
8	End	30.060	1.16	1.16	0.30	0.35	0.35	5.0	5.0	7.2	2.51	6.50	4.23	12	3.33	352.00	353.00	352.74	353.68	350.00	350.00	Pipe - (241)			
										'															
roje	ct File:	Weave	rs Point	Storm S	ystem.st	m						ject File: Weavers Point Storm System.stm													

Appendix F Gutter Spread Calculations


Line No.	Area	Inlet Time	Int.	Runoff Coeff.	Q = CIA	Q Carry- over	Q Captured	Q Bypassed	Junct Type	Curb Height	Curb Length	Grate Area	Grate Length	Grate Width	Gutter Slope	Gutter Width	Cross Slope, Sw	Cross Slope, Sx	Local Depr.	Inlet Depth	Bypass Depth	Bypass Spread	Gutter Depth	Gutter Spread	Bypass Line No.
	(ac)	(min)	(in/hr)	(C)	(cfs)	(cfs)	(cfs)	(cfs)	3257553	(in)	(ft)	(sqft)	(ft)	(ft)	(ft/ft)	(ft)	(ft/ft)	(ft/ft)	(in)	(ft)	(ft)	(ft)	(ft)	(ft)	100000
1	0.32	5.0	4.00	0.70	0.90	0.04	0.93	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.18	n/a	n/a	0.18	5.78	Sag
2	0.17	5.0	4.00	0.60	0.41	0.02	0.43	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.12	n/a	n/a	0.12	3.24	Sag
3	0.17	5.0	4.00	0.60	0.41	0.03	0.42	0.02	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.14	0.04	0.89	0.14	3.80	2
4	0.20	5.0	4.00	0.60	0.48	0.02	0.46	0.03	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.14	0.05	1.03	0.14	4.09	3
5	0.18	5.0	4.00	0.60	0.43	0.00	0.42	0.02	Comb.	6.0	3.00		3.00	2.00	0.012	2.00	0.050	0.020	0.0	0.13	0.04	0.78	0.13	3.56	4
6	0.18	5.0	4.00	0.60	0.43	0.00	0.42	0.02	Comb.	6.0	3.00		3.00	2.00	0.012	2.00	0.050	0.020	0.0	0.13	0.04	0.78	0.13	3.56	19
7	0.04	5.0	4.00	0.60	0.10	0.00	0.10	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.08	0.00	0.00	0.08	1.56	8
8	0.01	5.0	4.00	0.60	0.02	0.00	0.02	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.05	0.00	0.00	0.05	0.93	9
9	0.50	5.0	4.00	0.60	1.20	0.00	1.20	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.20	n/a	n/a	0.20	6.92	Sag
10	0.01	5.0	4.00	0.60	0.02	0.02	0.04	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.06	0.00	0.00	0.06	1.12	18
11	0.17	5.0	4.00	0.60	0.41	0.00	0.39	0.02	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.13	0.04	0.80	0.13	3.64	10
12	0.16	5.0	4.00	0.60	0.38	0.27	0.59	0.07	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.16	0.07	1.38	0.16	4.76	15
13	0.52	5.0	4.00	0.60	1.25	0.00	0.98	0.27	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.19	0.12	2.76	0.19	6.53	12
14	0.53	5.0	4.00	0.60	1.27	0.00	0.99	0.28	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.19	0.12	2.83	0.19	6.59	15
15	0.04	5.0	4.00	0.60	0.10	0.35	0.45	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.13	n/a	n/a	0.13	3.34	Sag
16	0.01	5.0	4.00	0.30	0.01	0.00	0.01	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.04	0.00	0.00	0.04	0.72	Offsite
17	0.25	5.0	4.00	0.60	0.60	0.00	0.60	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.14	n/a	n/a	0.14	4.18	Sag
18	0.50	5.0	4.00	0.60	1.20	0.00	1.20	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.20	n/a	n/a	0.20	6.92	Sag
19	0.01	5.0	4.00	0.60	0.02	0.02	0.04	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.06	0.00	0.00	0.06	1.13	20
20	0.32	5.0	4.00	0.60	0.77	0.00	0.67	0.10	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.16	0.08	1.59	0.16	5.17	21
21	0.45	5.0	4.00	0.60	1.08	0.10	1.18	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.20	n/a	n/a	0.20	6.84	Sag
22	0.70	5.0	4.00	0.60	1.68	0.00	1.68	0.00	Comb.	6.0	6.00	12.00	6.00	2.00	Sag	2.00	0.050	0.020	0.0	0.20	n/a	n/a	0.20	6.82	Sag
23	0.18	5.0	4.00	0.70	0.50	0.02	0.49	0.04	Comb.	6.0	3.00	···· ·	3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.14	0.06	1.11	0.14	4.23	1
24	0.18	5.0	4.00	0.60	0.43	0.02	0.43	0.02	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.14	0.05	0.93	0.14	3.88	23
25	0.20	5.0	4.00	0.60	0.48	0.02	0.48	0.02	Comb.	6.0	3.00		3.00	2.00	0.014	2.00	0.050	0.020	0.0	0.13	0.04	0.86	0.13	3.72	24
26	0.18	5.0	4.00	0.60	0.43	0.00	0.41	0.02	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.14	0.04	0.87	0.14	3.76	25
27	0.01	5.0	4.00	0.30	0.01	0.00	0.01	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.04	0.00	0.00	0.04	0.72	28
28	0.42	5.0	4.00	0.60	1.01	0.00	1.01	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.18	n/a	n/a	0.18	6.11	Sag
29	0.06	5.0	4.00	0.60	0.14	0.00	0.14	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.09	0.00	0.00	0.09	1.82	39
30	0.06	5.0	4.00	0.60	0.14	0.00	0.14	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.09	0.00	0.00	0.09	1.82	29
31	0.09	5.0	4.00	0.60	0.22	0.11	0.33	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.11	n/a	n/a	0.11	2.63	Sag
32	0.05	5.0	4.00	0.60	0.12	0.00	0.12	0.00	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.09	0.00	0.00	0.09	1.70	33
33	0.23	5.0	4.00	0.60	0.55	0.00	0.51	0.04	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.15	0.06	1.16	0.15	4.34	34
34	0.32	5.0	4.00	0.60	0.77	0.04	0.81	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.16	n/a	n/a	0.16	5.22	Sag 21
35	0.37	5.0	4.00	0.60	0.89	0.00	0.78	0.11	Comb.	6.0	3.00		3.00	2.00	0.016	2.00	0.050	0.020	0.0	0.16	0.08	1.52	0.16	4.94	31
36	0.08	5.0	4.00	0.60	0.19	0.00	0.19	0.00	Comb.	6.0	3.00	 648464646	3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.10	0.00	0.00	0.10	2.07	39
37	0.09	5.0	4.00	0.60	0.22	0.00	0.22	0.00	Comb.	6.0	3.00	 C 00	3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.11	0.00	0.00	0.11	2.30	38
38	0.09	5.0	4.00	0.60	0.22	0.00	0.22	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.10	n/a	n/a	0.10	2.00	Sag
39	0.41	5.0	4.00	0.60	0.98	0.00	0.98	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.18	n/a	n/a	0.18	6.00	Sag
40	0.18	5.0	4.00	0.60	0.43	0.00	0.41	0.02	Comb.	6.0	3.00		3.00	2.00	0.010	2.00	0.050	0.020	0.0	0.14	0.04	0.87	0.14	3.76	Offsite
41	0.01	5.0	4.00	0.30	0.01	0.00	1 15		MH		2.00				 C		0.050						0.10		 Care
42	0.48	5.0	4.00	0.60	1.15	0.00	1.15	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.19	n/a	n/a	0.19	6.72	Sag
43	0.48	5.0	4.00	0.60	1.15	0.00	1.15	0.00	Comb.	6.0	3.00	6.00	3.00	2.00	Sag	2.00	0.050	0.020	0.0	0.19	n/a	n/a	0.19	6.72	Sag

Analysis of existing catch basins on Street A

Existing DA to existing CI-37 = 0.18 ac Existing gutter spread at existing CI-37 = 2.00' Additional area to CI-37=0.39 ac New DA to existing CI-37=0.57 ac New gutter spread = 5.74'

Existing DA existing CI-38 = 0.35 ac Existing gutter spread at existing CI-38 = 2.87' Additional area to CI-38=0.32 ac New DA to existing CI-38=0.67 ac New gutter spread = 6.91'

Weaver's Pointe

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb In	let	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)		capt (cfs)	Byp (cfs)		Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)		Depth (ft)	Spread (ft)		Spread (ft)	Depr (in)	Line No
27	37	1.97	0.00	1.97	0.00	Comb	6.0	3.00	3.00	3.00	2.00	Sag	2.50	0.080	0.020	0.012	0.26	5.74	0.35	5.74	1.0	Off
28	39	1.93	0.00	1.93	0.00	Comb	6.0	3.00	3.00	3.00	2.00	Sag	2.50	0.080	0.020	0.012	0.26	5.62	0.35	5.62	1.0	Off
29	12	1.48	0.05	1.53	0.00	Comb	6.0	3.00	3.00	3.00	2.00	Sag	2.50	0.080	0.020	0.012	0.23	4.14	0.32	4.14	1.0	Off
30	30	0.46	0.00	0.46	0.00	Comb	6.0	3.00	3.00	3.00	2.00	Sag	2.50	0.080	0.020	0.012	0.12	1.78	0.20	1.78	1.0	Off
31	New	0.69	0.00	0.69	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.50	0.050	0.020	0.012	0.12	2.46	0.21	2.46	1.0	Off
32	New	0.87	0.00	0.87	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.50	0.050	0.020	0.012	0.14	3.30	0.22	3.30	1.0	Off
33	31	3.68	0.00	3.68	0.00	Comb	6.0	3.00	3.00	3.00	2.00	Sag	2.50	0.080	0.020	0.012	0.37	11.09	0.46	11.09	1.0	Off
34	38	2.31	0.00	2.31	0.00	Comb	6.0	3.00	3.00	3.00	2.00	Sag	2.50	0.080	0.020	0.012	0.29	6.91	0.37	6.91	1.0	Off
Projec	ct File: FDCWP7-8 S	torm.stm												Number	of lines:	8		R	un Date:	4/16/202	24	
NOTE	S: Inlet N-Values =	0.016; Inte	ensity = 7	'4.06 / (Ir	nlet time	+ 13.30)	^ 0.88;	Return	period =	2 Yrs. ;	* Indica	ites Know	/n Q add	led. All c	urb inlets	s are Ho	riz throat	-				

Appendix G Storm Sewer System Drainage Area Map

PIEDMONT LAND DESIGN, PLLC 8522–204 SIX FORKS ROAD RALEIGH, NORTH CAROLINA 27615 919.845.7600 PHONE 919.845.7703 FAX ENGR. FIRM LICENSE NO. F–0843 PRELIMINARY NOT FOR CONSTRUCTION \succ PROPERT LLC FAMILY, 2620 ZEBULON RD ZEBULON, NC URDY Δ ISSUED: PROGRESS **REVISIONS:** DRAWN BY: JET CHECKED BY: MLS PROJECT: FDCWP9 **STORM SEWER** DRAINAGE AREA MAP

DWG. NO. **DA.4**

NORTH							
0	100	200	300				

Appendix H Sediment Basin Drainage Area Map

GENERAL	NOTES

- 1. ALL MATERIALS AND METHODS OF CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE TOWN OF ZEBULON AND THE STATE OF NORTH CAROLINA STANDARDS AND SPECIFICATIONS.
- CONTRACTOR SHALL HAVE NORTH CAROLINA ONE CALL (1-800-632-4949) LOCATE ALL EXISTING UTILITIES PRIOR TO BEGINNING CONSTRUCTION.
- CONTRACTOR SHALL VERIFY THE LOCATION AND DEPTH OF ALL EXISTING UTILITIES AND NOTIFY THE ENGINEER OF ANY DISCREPANCIES OR CONFLICTS PRIOR TO BEGINNING CONSTRUCTION.
- 4. CONTRACTOR IS RESPONSIBLE FOR REMOVING OR RELOCATING ALL UTILITIES IN CONFLICT WITH NEW CONSTRUCTION. CONTRACTOR SHALL COORDINATE WITH UTILITY COMPANIES PRIOR TO DISTURBANCE.

8522–204 SIX FORKS ROAD RALEIGH, NORTH CAROLINA 27615 919.845.7600 PHONE 919.845.7703 FAX ENGR. FIRM LICENSE NO. F-0843

PRELIMINARY NOT FOR CONSTRUCTION

JRDY FAMILY, LLC PROPERTY	20 ZEBULON RD EBULON, NC
ے ا	26 ZE
ISSUED: P	
REVISIONS	S:
DRAWN BY:	JET
CHECKED BY	<pre>/: MLS FDCWP9</pre>
SEDIME TEMP D	ENT BASIN/ IVERSIONS E AREA MAP
DWG. NO.	DA.3

0			10	00		20	00	
SCA	λLE	IN	FEI	ET				

NORTH

300

Appendix I Sediment Basin Skimmer Sizing Calculations

Okay

12.6 Drainage Area (Acres) 45.5 Peak Flow from 10-year Storm (cfs) 22680 Required Volume (ft³) **19793** Required Surface Area (ft²) 99.5 Suggested Width (ft) 199.0 Suggested Length (ft) 200 Trial Top Width at Spillway Invert (ft) **100** Trial Top Length at Spillway Invert (ft) 2 Trial Side Slope Ratio Z:1 2 Trial Depth (ft) (2 to 3.5 feet above grade) 192 Bottom Width (ft) 92 Bottom Length (ft) 17664 Bottom Area (ft²) 37643 Actual Volume (ft³) Okay 20000 Actual Surface Area (ft²) Okay 45 Trial Weir Length (ft) 0.5 Suggested Trial Depth of Flow (ft) 47.7 Spillway Capacity (cfs) Okay 6 Skimmer Size (inches) 0.417 Head on Skimmer (feet)

- 2 Orifice Size (1/4 inch increments) 3.80 Dewatering Time (days)
 - Required 3 to 5 days for Wake County

Skimmer Size
(Inches)
1.5
2
2.5
3
4
5
6
8

Okay

8.8 Drainage Area (Acres) 31.8 Peak Flow from 10-year Storm (cfs) 15840 Required Volume (ft³) 13833 Required Surface Area (ft²) 83.2 Suggested Width (ft) 166.3 Suggested Length (ft) **115** Trial Top Width at Spillway Invert (ft) 225 Trial Top Length at Spillway Invert (ft) 2 Trial Side Slope Ratio Z:1 2 Trial Depth (ft) (2 to 3.5 feet above grade) 107 Bottom Width (ft) 217 Bottom Length (ft) 23219 Bottom Area (ft²) 49073 Actual Volume (ft³) Okay 25875 Actual Surface Area (ft²) Okay 30 Trial Weir Length (ft) 0.5 Suggested Trial Depth of Flow (ft) 31.8 Spillway Capacity (cfs) Okay 6 Skimmer Size (inches)

0.417 Head on Skimmer (feet)

- **1.5** Orifice Size (1/4 inch increments)
- 4.72 Dewatering Time (days) Required 3 to 5 days for Wake County

Skimmer Size
(Inches)
1.5
2
2.5
3
4
5
6
8

Okay

6.7 Drainage Area (Acres) 24.2 Peak Flow from 10-year Storm (cfs) 12060 Required Volume (ft³) 10527 Required Surface Area (ft²) 72.5 Suggested Width (ft) 145.1 Suggested Length (ft) **150** Trial Top Width at Spillway Invert (ft) 75 Trial Top Length at Spillway Invert (ft) 2 Trial Side Slope Ratio Z:1 2 Trial Depth (ft) (2 to 3.5 feet above grade) 142 Bottom Width (ft) 67 Bottom Length (ft) 9514 Bottom Area (ft²) 20743 Actual Volume (ft³) Okay 11250 Actual Surface Area (ft²) Okay 23 Trial Weir Length (ft) 0.5 Suggested Trial Depth of Flow (ft) 24.4 Spillway Capacity (cfs) Okay 4 Skimmer Size (inches) 0.333 Head on Skimmer (feet) **1.5** Orifice Size (1/4 inch increments) 4.02 Dewatering Time (days) Required 3 to 5 days for Wake County

Skimmer Size
(Inches)
1.5
2
2.5
3
4
5
6
8

Okay

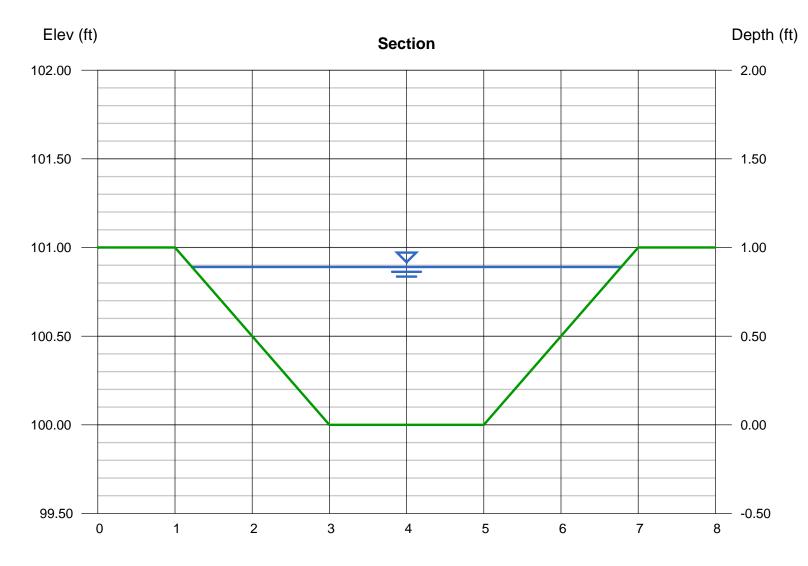
4.2 Drainage Area (Acres) 15.2 Peak Flow from 10-year Storm (cfs) 7560 Required Volume (ft³) 6612 Required Surface Area (ft²) 57.5 Suggested Width (ft) 115.0 Suggested Length (ft) **120** Trial Top Width at Spillway Invert (ft) 60 Trial Top Length at Spillway Invert (ft) 2 Trial Side Slope Ratio Z:1 2 Trial Depth (ft) (2 to 3.5 feet above grade) 112 Bottom Width (ft) 52 Bottom Length (ft) 5824 Bottom Area (ft²) 13003 Actual Volume (ft³) Okay 7200 Actual Surface Area (ft²) Okay 15 Trial Weir Length (ft) 0.5 Suggested Trial Depth of Flow (ft) 15.9 Spillway Capacity (cfs) Okay Skimmer Size 4 Skimmer Size (inches) 0.333 Head on Skimmer (feet) **1.25** Orifice Size (1/4 inch increments)

3.63 Dewatering Time (days) Required 3 to 5 days for Wake County

(Inches)	
	1.5
	2
2	2.5
	3
	4
	5
	6
	8

Appendix J Temporary Diversion Ditch/Slope Drain Calculations

Diversion Ditch Design								
							ALLOWABLE	
Diversion	Total DA	С	Q(10)	SLOPE	DEPTH	SHEAR STRESS	SHEAR STRESS	
	(CFS)		(CFS)	(FT/FT)	(FT)	(PSF)	(PSF)	LINER
1A	2.00	0.5	7.22	0.005	0.89	0.28	2.00	JUTE MAT
1B	5.00	0.5	18.05	0.005	1.38	0.43	2.00	JUTE MAT
1C	4.30	0.5	15.52	0.005	1.29	0.40	2.00	JUTE MAT
2A	0.10	0.5	0.36	0.04	0.18	0.45	2.00	JUTE MAT
2B	5.00	0.5	18.05	0.005	1.38	0.43	2.00	JUTE MAT
ЗA	1.40	0.5	5.05	0.02	0.74	0.92	2.00	JUTE MAT
3B	0.40	0.5	1.44	0.005	0.38	0.12	2.00	JUTE MAT
4A	1.90	0.5	6.86	0.005	0.87	0.27	2.00	JUTE MAT
4B	0.70	0.5	2.53	0.005	0.52	0.16	2.00	JUTE MAT

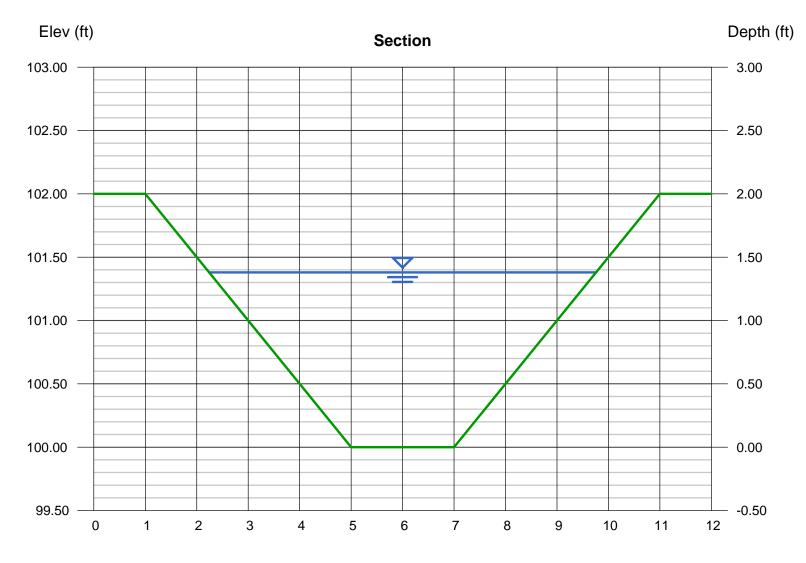

Slope Drains						
			REQUIRED	MINIMUM	MINIMUM	
Basin Slope Drain	DA	Q(10)	AREA	DIA	DIA	USE
	(AC)	(CFS)	(SF)	(FT)	(INCHES)	(INCHES)
BASIN 1 - From ditch 1A	2	7.22	1.22	1.25	14.98	15
BASIN 1 - From ditch 1B/1C	9.3	33.573	5.69	2.69	32.31	2@24
BASN 2 - From ditch 2A	0.1	0.361	0.06	0.28	3.35	12
BASN 2 - From ditch 2B	5	18.05	3.06	1.97	23.69	2@18
BASN 3 - From ditch 3A	1.4	5.054	0.86	1.04	12.54	15
BASN 3 - From ditch 3B	0.4	1.444	0.24	0.56	6.70	12
BASN 4 - From ditch 4A	0.7	2.527	0.43	0.74	8.86	12
BASN 4 - From ditch 4B	1.9	6.859	1.16	1.22	14.60	15

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Jan 29 2024

DIVERSION #1A

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.89
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 7.220
Total Depth (ft)	= 1.00	Area (sqft)	= 3.36
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.15
Slope (%)	= 0.50	Wetted Perim (ft)	= 5.98
N-Value	= 0.033	Crit Depth, Yc (ft)	= 0.61
		Top Width (ft)	= 5.56
Calculations		EGL (ft)	= 0.96
Compute by:	Known Q		
Known Q (cfs)	= 7.22		

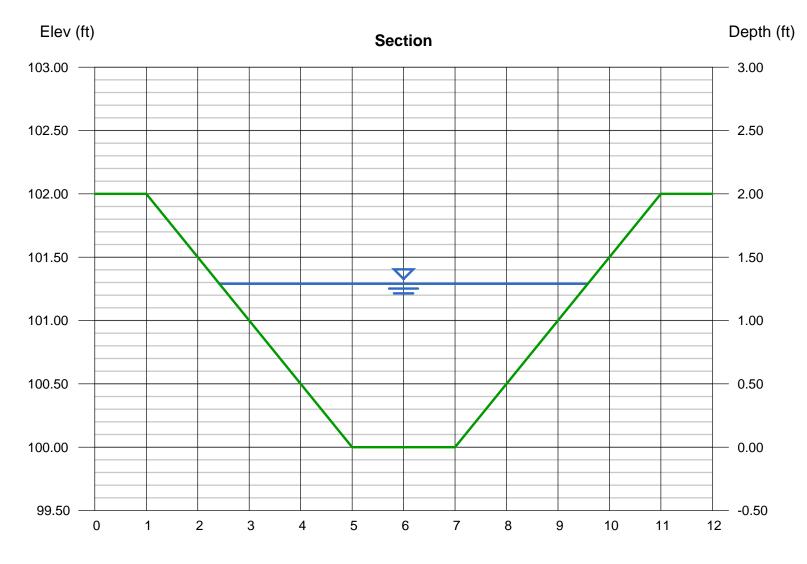


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Mar 25 2024

DIVERSION #1B

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.38
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 18.05
Total Depth (ft)	= 2.00	Area (sqft)	= 6.57
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.75
Slope (%)	= 0.50	Wetted Perim (ft)	= 8.17
N-Value	= 0.033	Crit Depth, Yc (ft)	= 0.99
		Top Width (ft)	= 7.52
Calculations		EGL (ft)	= 1.50
Compute by:	Known Q		
Known Q (cfs)	= 18.05		

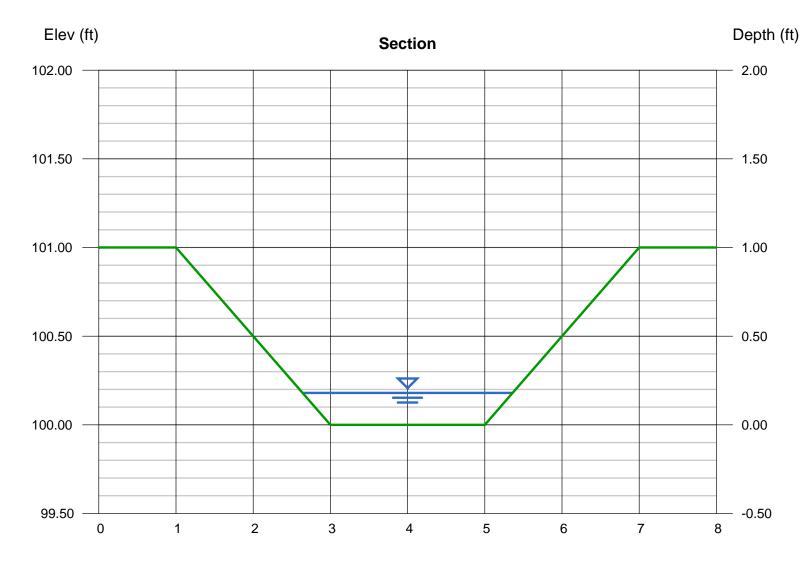


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Mar 25 2024

DIVERSION #1C

	Highlighted	
= 2.00	Depth (ft)	= 1.29
= 2.00, 2.00	Q (cfs)	= 15.52
= 2.00	Area (sqft)	= 5.91
= 100.00	Velocity (ft/s)	= 2.63
= 0.50	Wetted Perim (ft)	= 7.77
= 0.033	Crit Depth, Yc (ft)	= 0.92
	Top Width (ft)	= 7.16
	EGL (ft)	= 1.40
Known Q		
= 15.52		
	= 2.00, 2.00 = 2.00 = 100.00 = 0.50 = 0.033 Known Q	= 2.00 Depth (ft) = 2.00, 2.00 Q (cfs) = 2.00 Area (sqft) = 100.00 Velocity (ft/s) = 0.50 Wetted Perim (ft) = 0.033 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

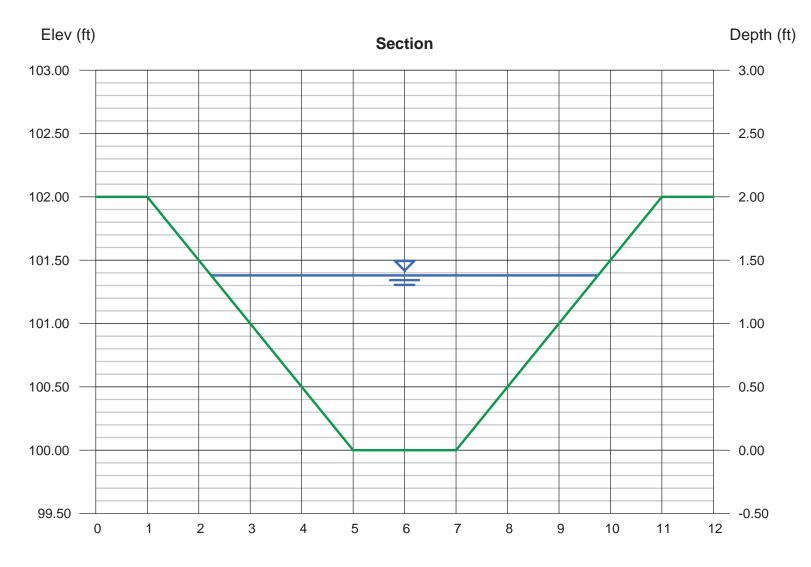


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Jan 29 2024

DIVERSION #2A

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.18
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 0.360
Total Depth (ft)	= 1.00	Area (sqft)	= 0.42
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 0.85
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.80
N-Value	= 0.033	Crit Depth, Yc (ft)	= 0.10
		Top Width (ft)	= 2.72
Calculations		EGL (ft)	= 0.19
Compute by:	Known Q		
Known Q (cfs)	= 0.36		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Mar 25 2024

DIVERSION # ^{2B}

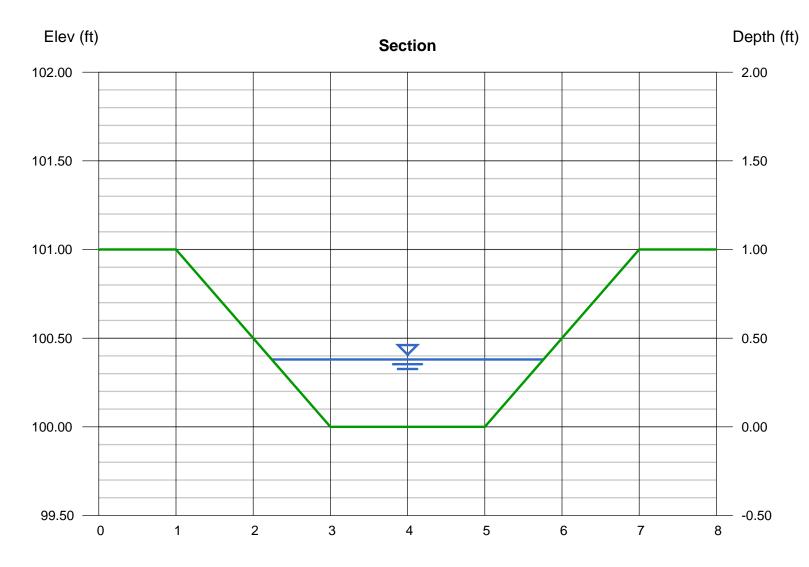
Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.38
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 18.05
Total Depth (ft)	= 2.00	Area (sqft)	= 6.57
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.75
Slope (%)	= 0.50	Wetted Perim (ft)	= 8.17
N-Value	= 0.033	Crit Depth, Yc (ft)	= 0.99
		Top Width (ft)	= 7.52
Calculations		EGL (ft)	= 1.50
Compute by:	Known Q		
Known Q (cfs)	= 18.05		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Jan 29 2024

DIVERSION #3A

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.74
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 5.050
Total Depth (ft)	= 1.00	Area (sqft)	= 2.58
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 1.96
Slope (%)	= 0.50	Wetted Perim (ft)	= 5.31
N-Value	= 0.033	Crit Depth, Yc (ft)	= 0.50
		Top Width (ft)	= 4.96
Calculations		EGL (ft)	= 0.80
Compute by:	Known Q		
Known Q (cfs)	= 5.05		

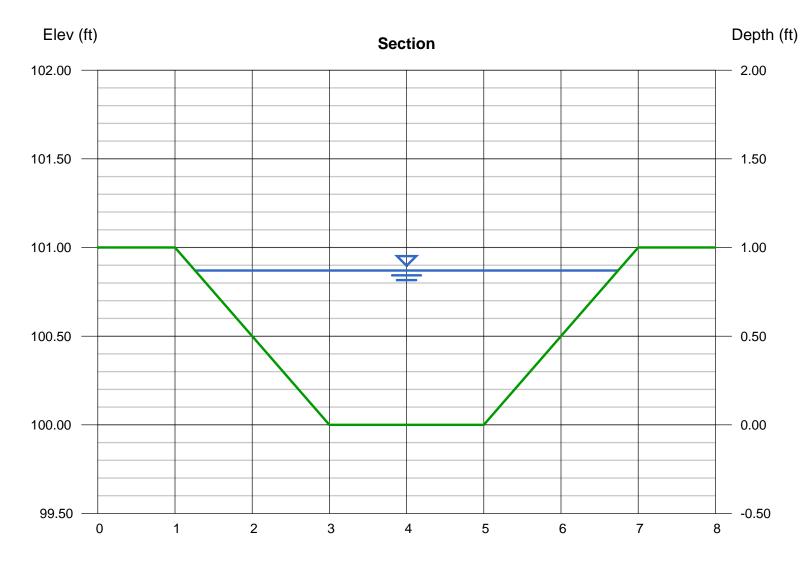


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Jan 29 2024

DIVERSION #3B

	Highlighted	
= 2.00	Depth (ft)	= 0.38
= 2.00, 2.00	Q (cfs)	= 1.440
= 1.00	Area (sqft)	= 1.05
= 100.00	Velocity (ft/s)	= 1.37
= 0.50	Wetted Perim (ft)	= 3.70
= 0.033	Crit Depth, Yc (ft)	= 0.24
	Top Width (ft)	= 3.52
	EGL (ft)	= 0.41
Known Q		
= 1.44		
	= 2.00, 2.00 = 1.00 = 100.00 = 0.50 = 0.033	= 2.00 Depth (ft) = 2.00, 2.00 Q (cfs) = 1.00 Area (sqft) = 100.00 Velocity (ft/s) = 0.50 Wetted Perim (ft) = 0.033 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

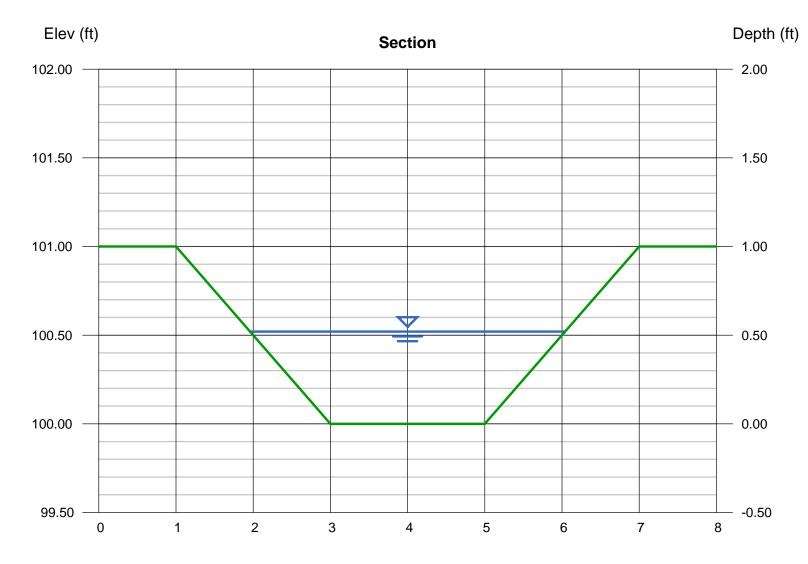


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Jan 29 2024

DIVERSION #4A

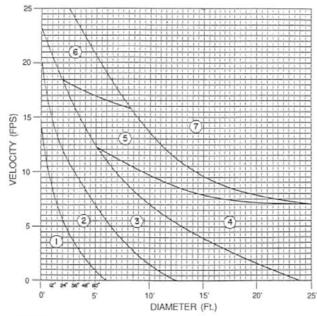
Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.87
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 6.860
Total Depth (ft)	= 1.00	Area (sqft)	= 3.25
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.11
Slope (%)	= 0.50	Wetted Perim (ft)	= 5.89
N-Value	= 0.033	Crit Depth, Yc (ft)	= 0.59
		Top Width (ft)	= 5.48
Calculations		EGL (ft)	= 0.94
Compute by:	Known Q		
Known Q (cfs)	= 6.86		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Jan 29 2024

DIVERSION #4B


Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.52
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 2.530
Total Depth (ft)	= 1.00	Area (sqft)	= 1.58
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 1.60
Slope (%)	= 0.50	Wetted Perim (ft)	= 4.33
N-Value	= 0.033	Crit Depth, Yc (ft)	= 0.33
		Top Width (ft)	= 4.08
Calculations		EGL (ft)	= 0.56
Compute by:	Known Q		
Known Q (cfs)	= 2.53		

Appendix K Energy Dissipater Calculations

Energy Dissipaters

			LENGTH C	F APRON
ZONE	APRON MATERIAL		TO PROTECT CULVERT	TO PREVENT SCOUR HOLE USE L2 ALWAYS
			L1	
1	STONE FILLING (FINE)	L.A	$3 \times D_0$	$4 \times D_{o}$
2	STONE FILLING (LIGHT)	L.B	3 X D ₀	6 x D _o
3	STONE FILLING (MEDIUM) C	L. 1	$4 \times D_0$	8 x D _o
4	STONE FILLING (HEAVY)	L. 1	$4 \times D_0$	8 x D _o
5	STONE FILLING (HEAVY)	XL. 2	$5 \times D_0$	10 x D _o
6	STONE FILLING (HEAVY)	CL. 2	$6 \times D_0$	10 x D _o
7	SPECIAL STUDY REQUIRED BASIN OR LARGER SIZE ST		RGY DISSIPATORS, ST	ILLING

Figure 8.06d

Width = 3 times pipe dia. (min.)

Figure 8.06c

	Diameter	Manning's	Min. thickness	
	(inches)	"n"	of lining	(inches)
Fine	3	0.031	9	12
Light	6	0.035	12	18
Medium	13	0.040	18	24
Heavy	23	0.044	30	36
			(Channels)	(Dissanators)

Required Energy Dissipater type/Dimensions							
Diameter Velocity APRON DIMENSIONS							
Outlet	Diameter (inches)	Velocity (fps)	Zone	Rip-Rap	Lengh (ft)	Width (ft)	Thickness (in)
1	24	5.38	2	Class B	12	6	18
8	15	5.7	2	Class B	8	4	18
10	15	4.15	2	Class B	8	4	18
12	15	4.13	2	Class B	8	4	18
14	24	6.13	2	Class B	12	6	18
15	30	6.8	2	Class B	15	8	18
44	30	5.92	2	Class B	15	8	18
78	15	9.63	2	Class B	8	4	18
80	30	6.31	2	Class B	15	8	18