

7-Eleven

1106 N. Arendell Ave

Proposed gas station and associated infrastructure Zebulon, North Carolina

COORDINATES: 35.8336261 N, -78.321664 W

Project No.: 220163-01-002

Erosion Control & Storm Design Calculations

Prepared By:

4006 Barrett Drive, Suite 104 Raleigh, NC 27609

PREPARED FOR:

Crosland Southeast

Attn. Nick Carroll

801 East Boulevard

Charlotte, NC 28202

(502) 693-0396

ncarroll@csere.com

Matt Lowder, PE
NC License No. 24434
(919) 553-6570
mlowder@bowman.com

SEPTEMBER 29, 2023

7-Eleven – Zebulon, NC

TABLE OF CONTENTS

Overview	3
 Background 	
 Floodplains and Streams 	
• Soils	
Storm Drainage Design Requirements	3
Rainfall Intensity and Time of Concentration	
Downstream Impact Analysis	4
Appendix A: Figures	5
Aerial Map	
Soil Report	
 Topography Map 	
FEMA Flood Map	
• HUC	
Surface Waters Classification	
NOAA Point Precipitation Frequency Estimates	
Pre-Development Drainage Map Post Development Drainage Map	
Post-Development Drainage Map Post Development Bypass Drainage Map	
 Post-Development Bypass Drainage Map 	
Appendix B: Stormwater Analysis	6
Wake County Stormwater Design Tool	
 CN Values 	
 Stormwater Wetland Design and Details 	
 Hydrographs 	
Downstream Analysis	
Appendix C: Storm Drainage Design Calculations	7
 Post-Development Drainage Map (Inlets) 	
• 100 System	
200 System	
300 System	

7-Eleven – Zebulon, NC 2 | Page

OVERVIEW

This report contains the stormwater design calculations for the proposed 7-Eleven. The project site is located on the eastern corner of the intersection of N. Arendell Ave and Dogwood Dr. in the town of Zebulon, North Carolina, within Wake County. Currently, the project site is single-family residential and wooded area.

The proposed project site consists of 3.86 acres and approximately 4.02 acres will be disturbed as part of this project for the construction of the site improvements, widening of Dogwood Drive, and construction of Jones Street. 0.46 acres will be dedicated to future road right-of-way. The proposed development consists of a 4,761 sf building, two fuel canopies, stormwater control measures, and associated pavement, including parking areas, driveways, and curbs.

Background

The development on the site will result in an impervious area of 92,017 sf (2.11 ac impervious – 54.69% of site area). Table 1 below shows the break-down of the impervious area added to the site.

Table 1. Impervious Area Summary

Impervious Area Summary								
Buildings	13,777 sf	0.32 ac						
Pavement	69,730 sf	1.60 ac						
Sidewalk	8,510 sf	0.20 ac						
Total Impervious Area	92,017 sf	2.11 ac						
Existing Impervious Area	3,650 sf	0.08 ac						

Floodplains and Streams

The proposed parcel is not located within a FEMA designated flood zone as shown on the combined FEMA FIRM Panel 3720270500K (July 19, 2022).

There are no existing streams and/or tributaries on the proposed property.

Soils

Based on the NRCS Web Soil Survey, the project site consists of Wedowee sandy loam (WeB) soils.

WeB soils are Group B with 2 to 6 percent slopes.

STORM DRAINAGE DESIGN REQUIREMENTS

The proposed stormwater drainage system design was based on standards presented in the Town of Zebulon Public Works Department Street and Storm Drainage Standards and Specifications Manual. The Town of Zebulon requires the following criteria:

- The minimum pipe culvert shall be 15" inches to minimize clogging and maintenance for all pipe culverts within Town of Zebulon Right-of-ways and easement.
- All pipe culverts to be a minimum class III reinforced concrete with a minimum pipe cover equal to 2 feet measured from the proposed finish grade to the top of the pipe. (Section 5.0.2C).

There are two storm drain systems proposed on site that drain to the proposed wet pond. There is a third storm drain system that collects a portion of Jones Street that will bypass the pond.

Rainfall Intensity and Time of Concentration

The 10-year, 5-minute rainfall intensity used in the design of the storm drainage system is **7.21 in/hr.** The time of concentration used in the design of the storm drainage system was assumed to be **5 minutes**.

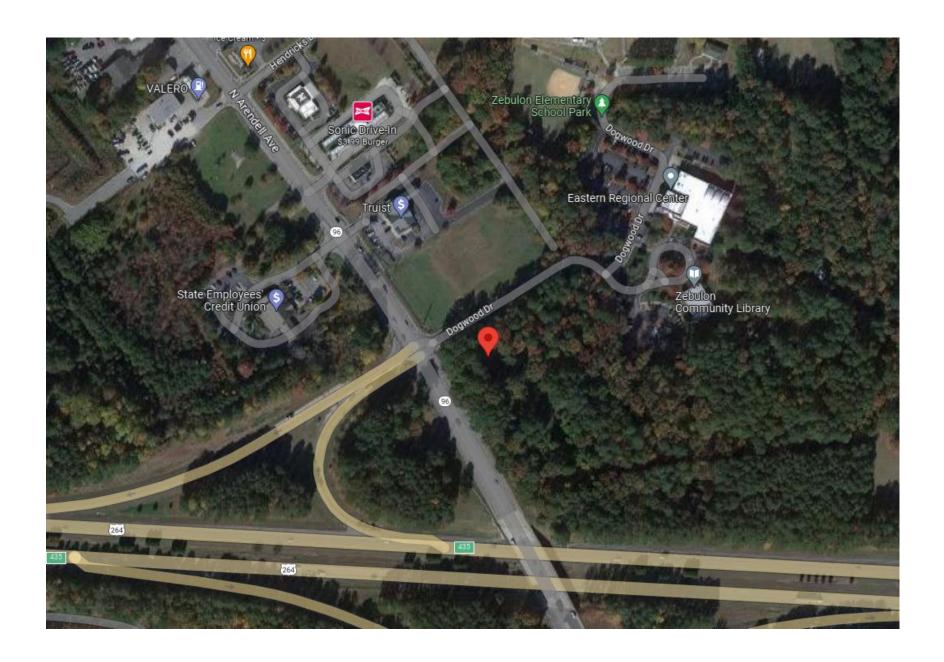
A complete analysis of the rainfall data can be found in Appendix A of this report. A complete analysis of the storm drain design and calculations can be found in Appendix C of this report.

DOWNSTREAM IMPACT ANALYSIS

A downstream impact analysis is included per the 10% rule. The StreamStats analysis point has a drainage area of approximately 39.7 acres, more than the 10% of the proposed development drainage area, and a 10-year peak flood flow of 71.8 cfs. For the 7-Eleven site, the Pre-Developed flow for the 10-year storm event is 3.965 cfs (per hydrographs). The Post-Developed through Pond flow for the 10-year storm event of the site is 1.280 cfs (per hydrographs) and a total of 3.519 cfs including bypass. The difference in flow is 0.446 cfs. This incorporates the proposed development. Since the 10-year storm event is being attenuated through the wet pond, there is a net decrease in peak flow from the pre-developed to post-developed condition. Therefore, there will be no impacts downstream.

APPENDIX A Figures

Aerial Map
Soil Report
Topography Map
FEMA Flood Map
HUC & Water Surface Classification
NOAA Point Precipitation Frequency Estimates
Pre-Development Drainage Map
Post-Development Drainage Map
Post-Development Bypass Drainage Map


APPENDIX B Stormwater Analysis

Wake County Stormwater Design Tool
CN Values
Time of Concentration
Stormwater Wetland Design and Details
Hydrographs
Downstream Analysis

APPENDIX C Storm Drainage Design Calculations

Post-Development Drainage Map (Inlets) 100 System 200 System 300 System

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 23, Sep 12, 2022 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Apr 24, 2022—May 9. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ur	Urban land		0.7	7.6%
WeB	Wedowee sandy loam, 2 to 6 percent slopes	В	8.8	92.4%
Totals for Area of Intere	est	9.5	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

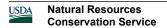
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

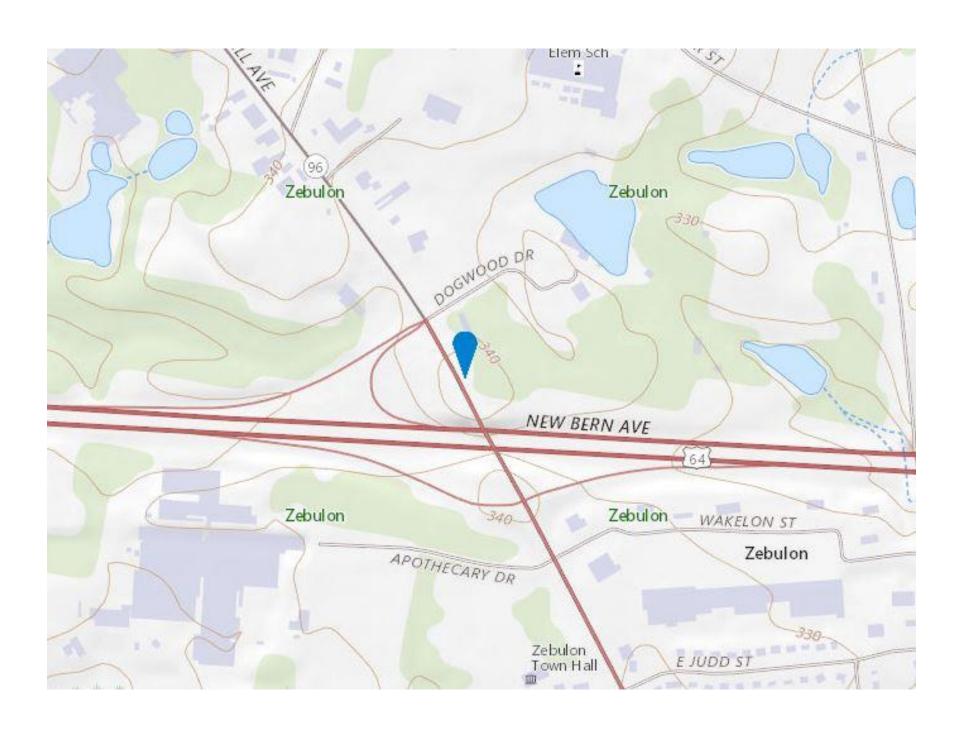
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options


Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

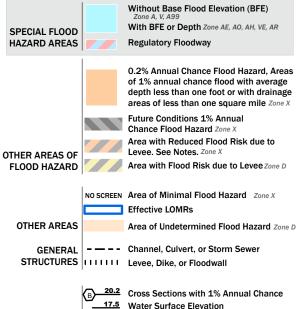
National Flood Hazard Layer FIRMette

250

500

1,000

1,500



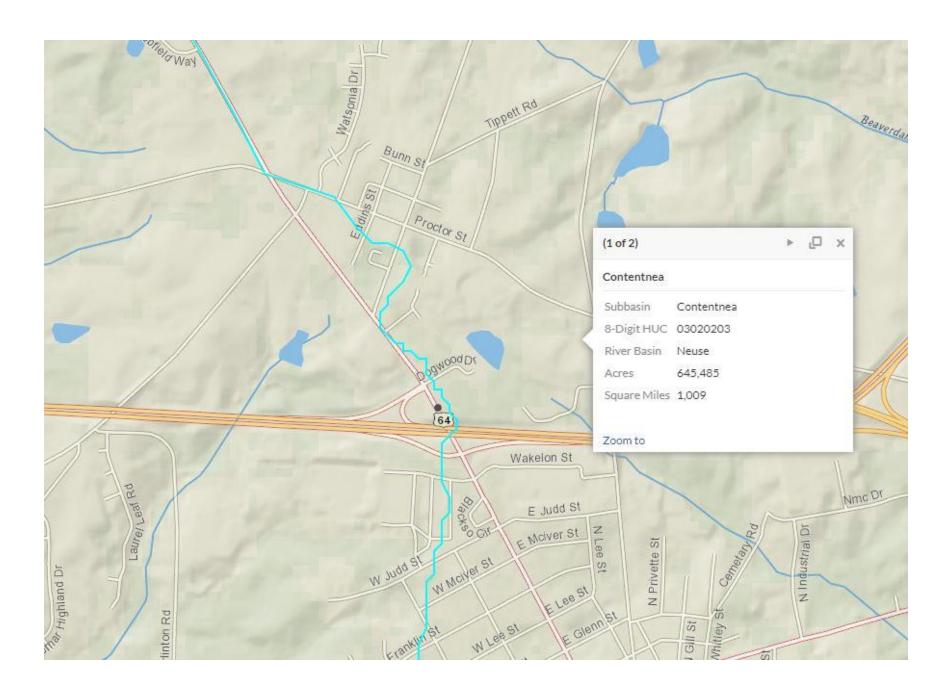
2,000

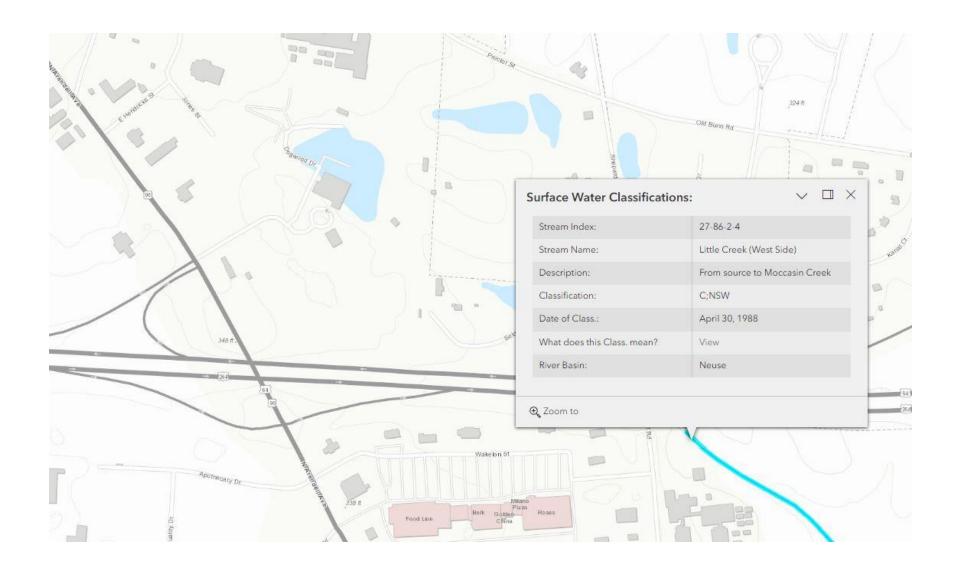
Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Coastal Transect ₩ 513 W Base Flood Elevation Line (BFE) Limit of Study **Jurisdiction Boundary** -- Coastal Transect Baseline OTHER **Profile Baseline FEATURES** Hydrographic Feature

> Digital Data Available No Digital Data Available Unmapped


MAP PANELS


The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/28/2023 at 8:31 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.8359°, Longitude: -78.3212° Elevation: 336 ft**

NORR

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

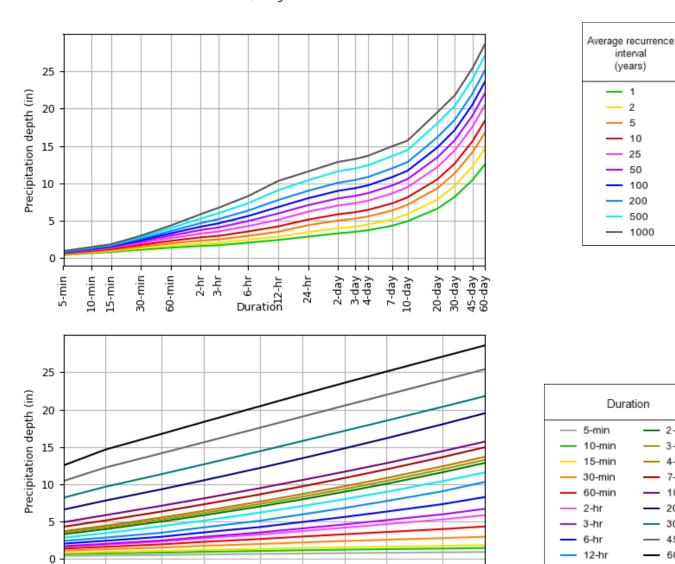
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS	S-based p	oint preci	pitation fr	equency o	estimates	with 90%	confiden	ce interva	ls (in incl	nes) ¹
Duration				Averag	je recurrend	e interval (y	years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.405 (0.369-0.444)	0.468 (0.428-0.512)	0.530 (0.485-0.580)	0.601 (0.548-0.657)	0.670 (0.609-0.732)	0.728 (0.658-0.795)	0.780 (0.701-0.851)	0.827 (0.739-0.904)	0.880 (0.780-0.963)	0.930 (0.818-1.02)
10-min	0.646 (0.590-0.710)	0.748 (0.685-0.819)	0.849 (0.777-0.929)	0.961 (0.877-1.05)	1.07 (0.970-1.17)	1.16 (1.05-1.27)	1.24 (1.11-1.35)	1.31 (1.17-1.43)	1.39 (1.23-1.52)	1.46 (1.29-1.61)
15-min	0.808 (0.737-0.887)	0.941 (0.861-1.03)	1.07 (0.983-1.18)	1.22 (1.11-1.33)	1.35 (1.23-1.48)	1.47 (1.33-1.60)	1.57 (1.41-1.71)	1.65 (1.48-1.81)	1.75 (1.55-1.92)	1.84 (1.62-2.02)
30-min	1.11 (1.01-1.22)	1.30 (1.19-1.42)	1.53 (1.40-1.67)	1.76 (1.61-1.92)	2.00 (1.82-2.19)	2.21 (2.00-2.42)	2.40 (2.16-2.62)	2.57 (2.30-2.81)	2.79 (2.47-3.05)	2.98 (2.62-3.27)
60-min	1.38 (1.26-1.52)	1.63 (1.49-1.78)	1.96 (1.79-2.14)	2.29 (2.09-2.51)	2.67 (2.42-2.92)	3.00 (2.71-3.27)	3.30 (2.97-3.60)	3.61 (3.23-3.95)	4.00 (3.55-4.38)	4.35 (3.82-4.77)
2-hr	1.62 (1.46-1.79)	1.91 (1.74-2.10)	2.32 (2.11-2.56)	2.76 (2.50-3.03)	3.27 (2.94-3.59)	3.74 (3.35-4.10)	4.19 (3.73-4.59)	4.66 (4.13-5.10)	5.29 (4.63-5.79)	5.86 (5.09-6.44)
3-hr	1.71 (1.55-1.90)	2.03 (1.85-2.24)	2.47 (2.25-2.74)	2.96 (2.68-3.26)	3.54 (3.18-3.90)	4.08 (3.65-4.49)	4.62 (4.10-5.08)	5.20 (4.57-5.71)	5.97 (5.20-6.57)	6.71 (5.77-7.39)
6-hr	2.05 (1.87-2.27)	2.43 (2.22-2.68)	2.97 (2.70-3.27)	3.55 (3.23-3.91)	4.27 (3.85-4.68)	4.94 (4.43-5.41)	5.62 (4.99-6.14)	6.34 (5.58-6.93)	7.34 (6.37-8.02)	8.28 (7.10-9.07)
12-hr	2.41 (2.20-2.66)	2.86 (2.62-3.15)	3.51 (3.21-3.86)	4.22 (3.84-4.64)	5.11 (4.62-5.60)	5.96 (5.34-6.50)	6.82 (6.05-7.43)	7.76 (6.80-8.44)	9.06 (7.82-9.86)	10.3 (8.77-11.2)
24-hr	2.85 (2.65-3.09)	3.46 (3.21-3.74)	4.38 (4.06-4.74)	5.14 (4.75-5.55)	6.20 (5.71-6.69)	7.07 (6.48-7.64)	8.00 (7.29-8.64)	8.99 (8.14-9.73)	10.4 (9.34-11.3)	11.6 (10.3-12.6)
2-day	3.30 (3.07-3.56)	3.98 (3.71-4.30)	5.02 (4.66-5.41)	5.85 (5.42-6.31)	7.02 (6.47-7.58)	7.98 (7.32-8.61)	8.99 (8.21-9.71)	10.1 (9.13-10.9)	11.6 (10.4-12.6)	12.9 (11.4-14.0)
3-day	3.51 (3.27-3.77)	4.22 (3.93-4.54)	5.29 (4.92-5.68)	6.14 (5.70-6.60)	7.35 (6.79-7.90)	8.33 (7.66-8.96)	9.36 (8.57-10.1)	10.5 (9.51-11.3)	12.0 (10.8-13.0)	13.3 (11.9-14.4)
4-day	3.71 (3.46-3.98)	4.46 (4.16-4.78)	5.56 (5.18-5.95)	6.44 (5.99-6.89)	7.67 (7.11-8.22)	8.68 (8.00-9.30)	9.73 (8.93-10.4)	10.8 (9.89-11.7)	12.4 (11.2-13.4)	13.7 (12.3-14.8)
7-day	4.31 (4.03-4.61)	5.16 (4.82-5.52)	6.35 (5.93-6.80)	7.31 (6.81-7.82)	8.64 (8.02-9.24)	9.71 (8.99-10.4)	10.8 (9.97-11.6)	12.0 (11.0-12.9)	13.6 (12.4-14.7)	15.0 (13.5-16.2)
10-day	4.92 (4.61-5.25)	5.87 (5.50-6.26)	7.12 (6.67-7.59)	8.11 (7.59-8.64)	9.47 (8.83-10.1)	10.6 (9.81-11.3)	11.7 (10.8-12.5)	12.8 (11.8-13.7)	14.4 (13.2-15.5)	15.7 (14.3-16.9)
20-day	6.60 (6.21-7.03)	7.82 (7.36-8.32)	9.33 (8.77-9.93)	10.5 (9.88-11.2)	12.2 (11.4-12.9)	13.5 (12.6-14.3)	14.8 (13.8-15.8)	16.2 (15.0-17.2)	18.0 (16.6-19.3)	19.5 (17.8-20.9)
30-day	8.20 (7.74-8.70)	9.67 (9.13-10.3)	11.4 (10.7-12.0)	12.7 (11.9-13.4)	14.4 (13.5-15.3)	15.8 (14.8-16.8)	17.1 (16.0-18.2)	18.5 (17.2-19.7)	20.4 (18.9-21.7)	21.8 (20.1-23.3)
45-day	10.4 (9.90-11.0)	12.3 (11.6-12.9)	14.2 (13.4-14.9)	15.6 (14.8-16.5)	17.6 (16.6-18.6)	19.0 (18.0-20.1)	20.5 (19.3-21.7)	22.0 (20.6-23.3)	23.9 (22.3-25.4)	25.4 (23.6-27.0)
60-day	12.5 (11.9-13.2)	14.7 (13.9-15.4)	16.7 (15.9-17.6)	18.4 (17.4-19.3)	20.4 (19.4-21.5)	22.0 (20.8-23.2)	23.6 (22.2-24.9)	25.1 (23.6-26.5)	27.1 (25.4-28.7)	28.6 (26.7-30.4)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 35.8359°, Longitude: -78.3212°

NOAA Atlas 14, Volume 2, Version 3

2

5

10

25

Average recurrence interval (years)

50

Created (GMT): Mon Sep 11 12:32:23 2023

500

1000

Back to Top

100

200

Maps & aerials

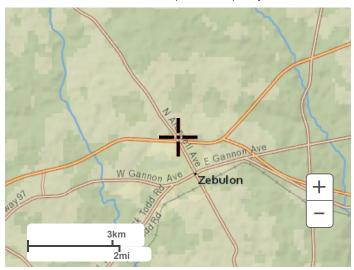
Small scale terrain

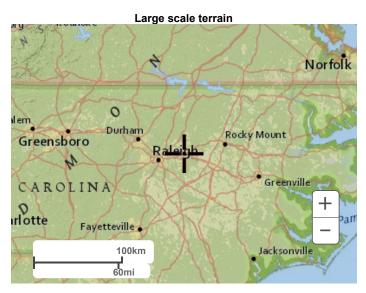
2-day

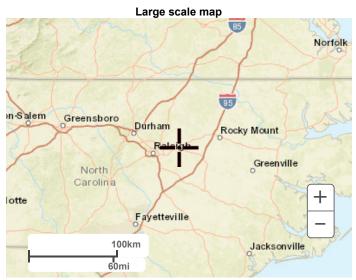
3-day

4-day

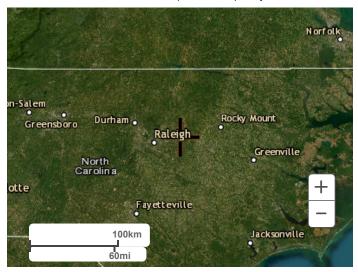
7-day


10-day 20-day


30-day


45-day

60-day


24-hr

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.8359°, Longitude: -78.3212° Elevation: 336 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

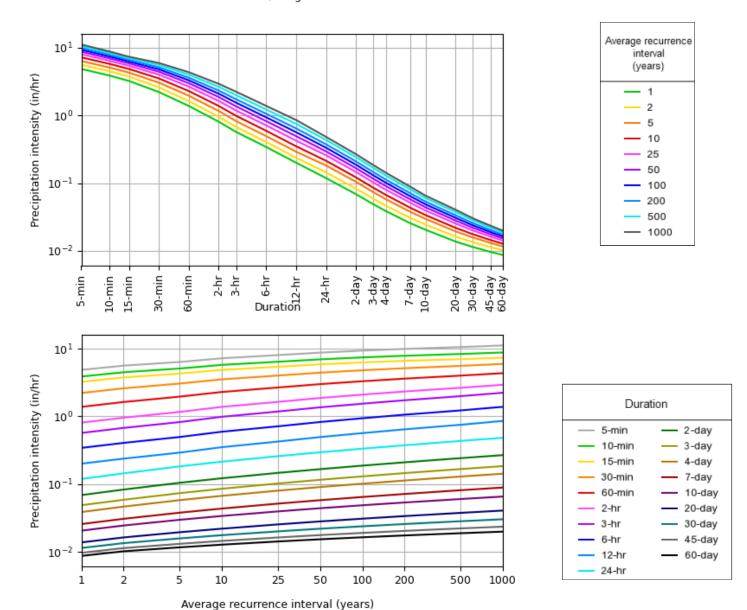
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.86 (4.43-5.33)	5.62 (5.14-6.14)	6.36 (5.82-6.96)	7.21 (6.58-7.88)	8.04 (7.31-8.78)	8.74 (7.90-9.54)	9.36 (8.41-10.2)	9.92 (8.87-10.8)	10.6 (9.36-11.6)	11.2 (9.82-12.3)
10-min	3.88 (3.54-4.26)	4.49 (4.11-4.91)	5.09 (4.66-5.57)	5.77 (5.26-6.30)	6.41 (5.82-7.00)	6.95 (6.29-7.60)	7.43 (6.68-8.11)	7.86 (7.03-8.59)	8.35 (7.40-9.14)	8.79 (7.73-9.64)
15-min	3.23 (2.95-3.55)	3.76 (3.44-4.12)	4.30 (3.93-4.70)	4.86 (4.44-5.32)	5.41 (4.92-5.91)	5.87 (5.31-6.42)	6.26 (5.63-6.84)	6.61 (5.91-7.23)	7.01 (6.21-7.67)	7.36 (6.46-8.07)
30-min	2.22 (2.02-2.43)	2.60 (2.38-2.84)	3.05 (2.79-3.34)	3.52 (3.21-3.85)	4.01 (3.64-4.38)	4.42 (4.00-4.83)	4.80 (4.31-5.23)	5.15 (4.60-5.63)	5.57 (4.94-6.10)	5.96 (5.23-6.53)
60-min	1.38 (1.26-1.52)	1.63 (1.49-1.78)	1.96 (1.79-2.14)	2.29 (2.09-2.51)	2.67 (2.42-2.92)	3.00 (2.71-3.27)	3.30 (2.97-3.60)	3.61 (3.23-3.95)	4.00 (3.55-4.38)	4.35 (3.82-4.77)
2-hr	0.807 (0.731-0.894)	0.956 (0.870-1.05)	1.16 (1.06-1.28)	1.38 (1.25-1.52)	1.64 (1.47-1.79)	1.87 (1.68-2.05)	2.10 (1.86-2.29)	2.33 (2.06-2.55)	2.64 (2.32-2.90)	2.93 (2.54-3.22)
3-hr	0.569 (0.516-0.633)	0.675 (0.615-0.746)	0.823 (0.748-0.911)	0.985 (0.892-1.09)	1.18 (1.06-1.30)	1.36 (1.22-1.50)	1.54 (1.36-1.69)	1.73 (1.52-1.90)	1.99 (1.73-2.19)	2.23 (1.92-2.46)
6-hr	0.342 (0.311-0.379)	0.405 (0.370-0.447)	0.495 (0.451-0.545)	0.593 (0.538-0.652)	0.712 (0.643-0.781)	0.825 (0.739-0.903)	0.938 (0.833-1.03)	1.06 (0.931-1.16)	1.22 (1.06-1.34)	1.38 (1.18-1.51)
12-hr	0.200 (0.182-0.220)	0.237 (0.217-0.261)	0.291 (0.266-0.320)	0.350 (0.319-0.385)	0.424 (0.383-0.464)	0.494 (0.443-0.539)	0.565 (0.502-0.616)	0.643 (0.564-0.700)	0.751 (0.649-0.818)	0.856 (0.727-0.932
24-hr	0.118 (0.110-0.128)	0.143 (0.133-0.155)	0.182 (0.169-0.197)	0.214 (0.197-0.231)	0.258 (0.237-0.278)	0.294 (0.270-0.318)	0.333 (0.303-0.360)	0.374 (0.339-0.405)	0.433 (0.389-0.470)	0.482 (0.429-0.52
2-day	0.068 (0.063-0.074)	0.082 (0.077-0.089)	0.104 (0.097-0.112)	0.121 (0.112-0.131)	0.146 (0.134-0.157)	0.166 (0.152-0.179)	0.187 (0.170-0.202)	0.209 (0.190-0.226)	0.241 (0.217-0.262)	0.267 (0.238-0.292
3-day	0.048 (0.045-0.052)	0.058 (0.054-0.063)	0.073 (0.068-0.078)	0.085 (0.079-0.091)	0.102 (0.094-0.109)	0.115 (0.106-0.124)	0.129 (0.119-0.140)	0.145 (0.132-0.156)	0.166 (0.150-0.180)	0.184 (0.164-0.20
4-day	0.038 (0.036-0.041)	0.046 (0.043-0.049)	0.057 (0.053-0.062)	0.067 (0.062-0.071)	0.079 (0.074-0.085)	0.090 (0.083-0.096)	0.101 (0.092-0.108)	0.112 (0.102-0.121)	0.129 (0.116-0.139)	0.142 (0.127-0.154
7-day	0.025 (0.023-0.027)	0.030 (0.028-0.032)	0.037 (0.035-0.040)	0.043 (0.040-0.046)	0.051 (0.047-0.055)	0.057 (0.053-0.061)	0.064 (0.059-0.069)	0.071 (0.065-0.076)	0.081 (0.073-0.087)	0.089 (0.080-0.096
10-day	0.020 (0.019-0.021)	0.024 (0.022-0.026)	0.029 (0.027-0.031)	0.033 (0.031-0.036)	0.039 (0.036-0.042)	0.043 (0.040-0.046)	0.048 (0.045-0.051)	0.053 (0.049-0.057)	0.060 (0.055-0.064)	0.065 (0.059-0.07
20-day	0.013 (0.012-0.014)	0.016 (0.015-0.017)	0.019 (0.018-0.020)	0.021 (0.020-0.023)	0.025 (0.023-0.026)	0.028 (0.026-0.029)	0.030 (0.028-0.032)	0.033 (0.031-0.035)	0.037 (0.034-0.040)	0.040 (0.037-0.04
30-day	0.011 (0.010-0.012)	0.013 (0.012-0.014)	0.015 (0.014-0.016)	0.017 (0.016-0.018)	0.020 (0.018-0.021)	0.021 (0.020-0.023)	0.023 (0.022-0.025)	0.025 (0.023-0.027)	0.028 (0.026-0.030)	0.030 (0.027-0.03
45-day	0.009 (0.009-0.010)	0.011 (0.010-0.011)	0.013 (0.012-0.013)	0.014 (0.013-0.015)	0.016 (0.015-0.017)	0.017 (0.016-0.018)	0.019 (0.017-0.020)	0.020 (0.019-0.021)	0.022 (0.020-0.023)	0.023 (0.021-0.02
60-day	0.008	0.010	0.011	0.012 (0.012-0.013)	0.014	0.015	0.016	0.017	0.018	0.019

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

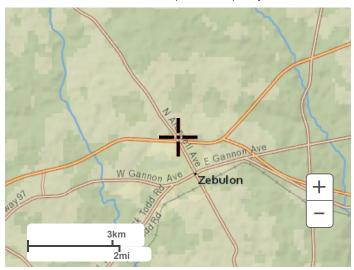

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

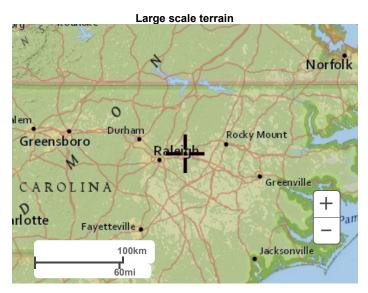
Please refer to NOAA Atlas 14 document for more information.

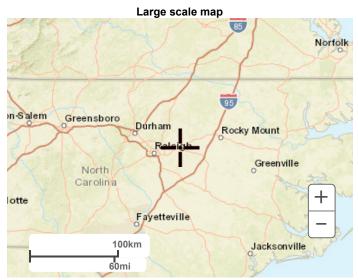
Back to Top

PF graphical

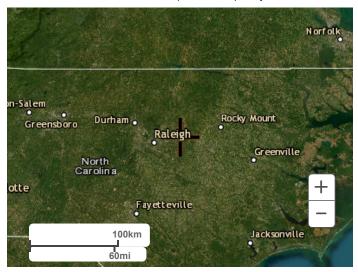
PDS-based intensity-duration-frequency (IDF) curves Latitude: 35.8359°, Longitude: -78.3212°

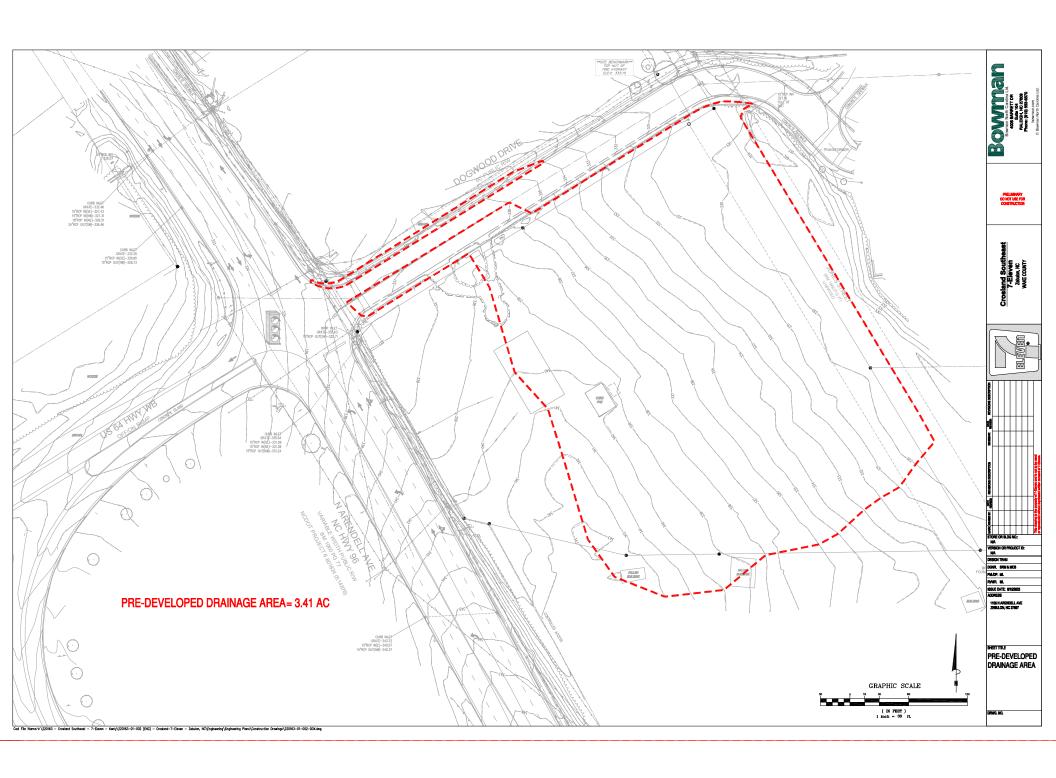

NOAA Atlas 14, Volume 2, Version 3

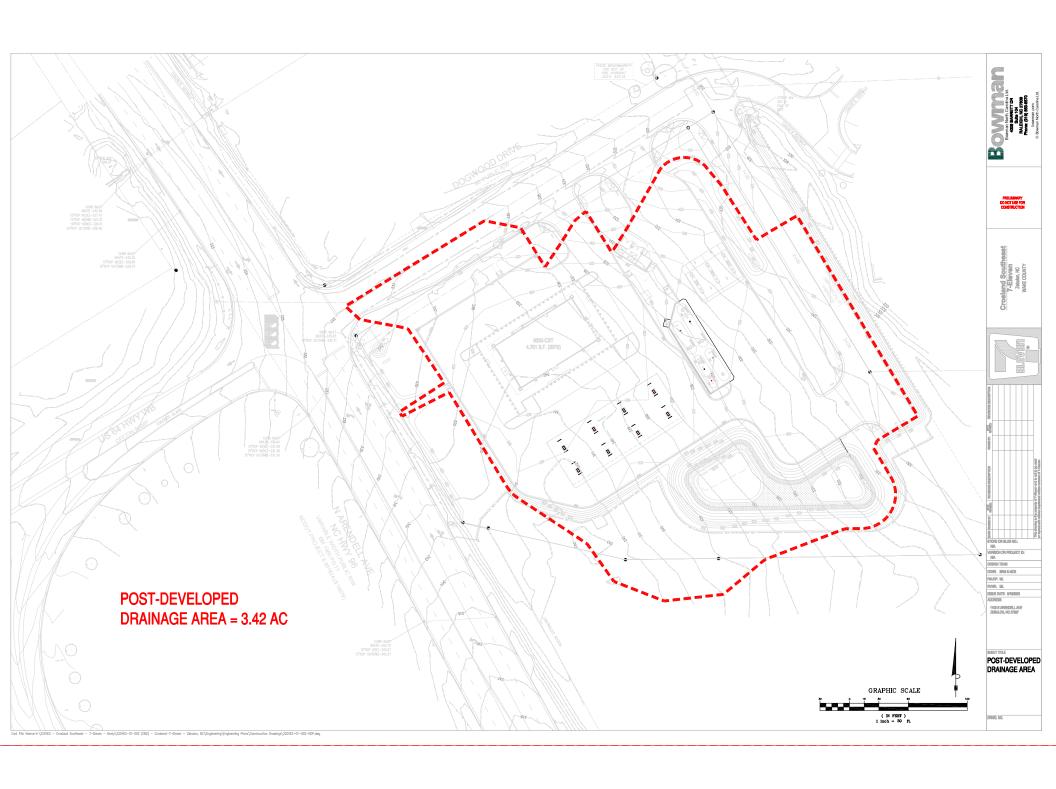

Created (GMT): Mon Sep 11 12:32:46 2023

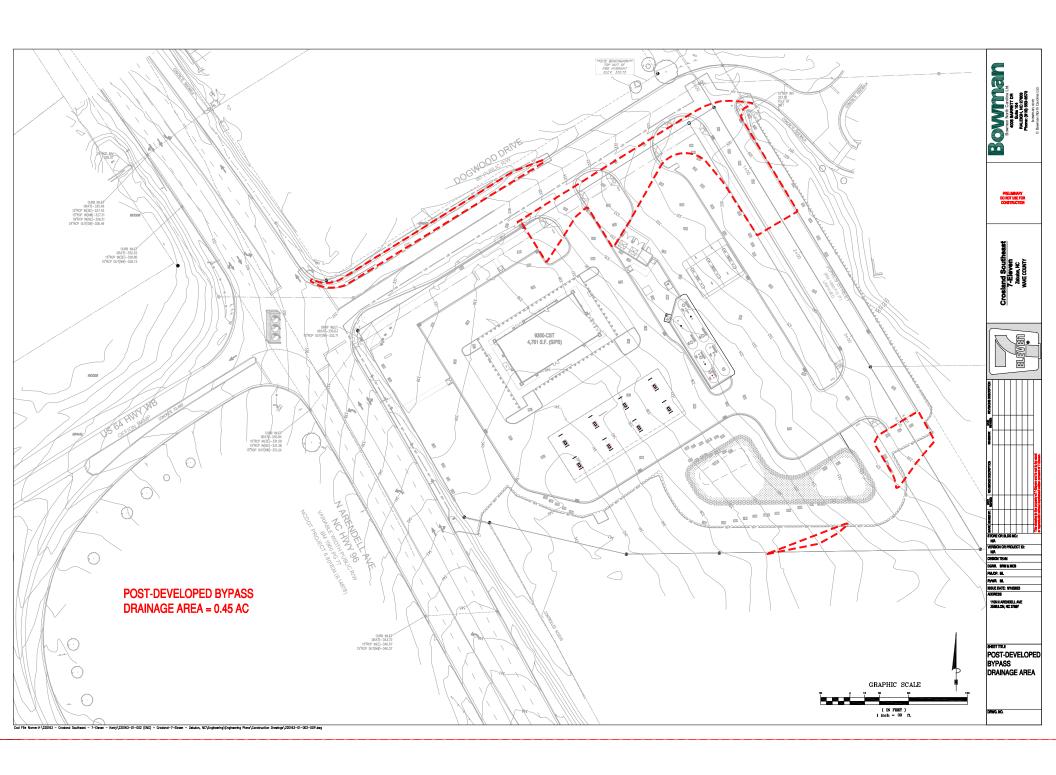

Back to Top

Maps & aerials


Small scale terrain


Large scale aerial




Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

SITE DATA

	Project Information
Project Name:	7-Eleven
Permit No (if known):	
Applicant:	Crosland Southest
Applicant Contact Name:	Nick Carroll
Applicant Contact Number:	(502) 693-0396
Contact Email:	ncarroll@csere.com
Last Modified Date:	Thursday, September 28, 2023
	Site Data:
River Basin:	Neuse
Regulatory Watershed:	N/A
Physiographic/Geologic Region:	Piedmont
Type of Development (Select from Dropdown menu):	Non-Residential
Zoning:	General Business
Total Site Area (Ac):	3.08
Existing Lake/Pond Area (Ac):	0.00
Proposed Disturbed Area (Ac):	4.02
Proposed Impervious Surface Area from DA Sheets (acre):	1.95
Percent Built Upon Area (BUA):	63%
Is the proposed project a site expansion?	No
Number of Drainage Areas on Site (Points of Analysis):	1
Annual Rainfall (in):	45.41
One-year, 24-hour rainfall (in):	3.00
Two-year, 24-hour rainfall (in):	3.60
Proposed Reside	ential Stormwater Details (if applicable):
Site Square Footage:	133,966
Total Acreage in Lots:	
Lot Square Footage:	
Number of Lots:	
Average Lot Size (SF):	
Proposed Impervious Surface Area from DA sheets (SF):	84,971
Proposed Impervious Surface Area Devoted to Lots (SF):	
Total Impervious Surface Area Devoted to Roads (SF):	
Other Impervious Surface Area (SF):	

SITE DATA Page 1

Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary):
There is a proposed stormwater management facility (stormwater wetland) on site. The design includes the 7-Eleven site (168,247 sf - 3.86 ac) and parts of Dogwood Drive and
ones Street. The SCM outlined in this report has been designed for post-development peak attenuation and water quality. The SCM is designed to capture a drainage area of 3.42 cres wiith an impervious area of 2.16 acres. The site grading and storm drainage systems are designed to convey stormwater runoff from the impervious areas of the site to the tormwater wetland. The site is not located within a coastal county, therefore the design storm for water quality is a 1.0" storm event. The SCMs are designed per the Town of Zebulon tormwater UDO.

SITE DATA Page 2 WAKE COUNTY

Project Name: 7-Eleven

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA			Р	RE-DEVE	LOPME	NT			POST-DEVELOPMENT							
Drainage Area (Acres)=				3.	41				3.42							
Site Acreage within Drainage=				2.	91				3.08							
One-year, 24-hour rainfall (in)=								3.	00							
Land Use (acres) by Soil Group:	Α 5	A Soils B Soils C Soils D Soils						Soils	B.S	Soils	C.S	Soils	D Soils			
Commercial	Site	Offsite	Site Offsite		Site			Site Offsite		Site Offsite		Offsite	Site	Offsite	Site Offsite	
Parking lot	Oite	Offsite	Oito	Onsite	Oite	Onoite	Oite	Oliolic	One	Offsite	Site 1.37	Onoite	One	Onoite	One	Onsite
Roof		 		 		 		 		 	0.32	 		<u> </u>		!
Open/Landscaped		 		 		 		 		 	0.56	 		 		•
Industrial	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Parking lot	Oito	Circuto	Oito	Circuto	Olio	i onono	Olio	0110110	Ono	Circuto	Ono		O.KO	l Giloito	O.KO	- Girono
Roof		1		1				1		1						†
Open/Landscaped																
Transportation	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
High Density (interstate, main)	0.10	Citolic	Oito	Circuto	Olio	Circuto	Oito	Circuto	Ono	Circilo	Ono	Circuto	O.KO	Circuit	One	- Circuto
High Density (Grassed Right-of-ways)								•								
Low Density (secondary, feeder)		Ì		0.08		 		i		Ì	0.12	0.21				1
Low Density (Grassed Right-of-ways)				0.05							0.03	0.01				
Rural		:				1		:		:		1		1		
Rural (Grassed Right-of-ways)																
Sidewalk				0.03							0.15			-		1
Misc. Pervious	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Managed pervious (Open Space)						!						!				
Unmanaged (pasture)																
Woods (not on lots)		i		i		i		i		i	0.20	0.12		i		i
Residential	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Roadway																
Grassed Right-of-ways																
Driveway			0.02													
Parking lot																
Roof		İ	0.05							İ						
Sidewalk (Includes Patios)		i	0.01	i		i		i		i		i		i		i
Lawn						i						i				
Managed pervious (Open Space)																
Woods (on lots)			2.83	0.35												
Land Taken up by BMP		<u> </u>		<u> </u>				! :		<u> </u>	0.33					
JURISDICTIONAL LANDS	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Natural wetland				į				ļ						İ		Ī
Riparian buffer (Zone 1 only)		i		i		i		i		i		i				ì
Open water		i		i				i		i				ĺ		i
Totals (Ac)=	0.00	0.00	2.91	0.50	0.00	0.00	0.00	0.00	0.00	0.00	3.08	0.34	0.00	0.00	0.00	0.00

DA1 Page 1

SITE FLOW	PR	E-DEVELOPMENT T _c	POST-DEVELOPMENT Tc				
Sheet Flow							
Length (ft)=		100.00	100.00				
Slope (ft/ft)=		0.04	0.01				
Surface Cover:		Woods	Paved, Gravel, or Bare Soil				
n-value=		0.40	0.011				
T _t (hrs)=		0.25	0.03				
Shallow Flow							
Length (ft)=		672.00	97.00				
Slope (ft/ft)=		0.01	0.01				
Surface Cover:		Unpaved	Paved				
Average Velocity (ft/sec)=		1.89	1.85				
T _t (hrs)=		0.10	0.01				
Channel Flow 1							
Length (ft)=			377.00				
Slope (ft/ft)=			0.01				
Cross Sectional Flow Area (ft ²)=			1.23				
Wetted Perimeter (ft)=			3.93				
Channel Lining:			Concrete, finished				
n-value=			0.012				
Hydraulic Radius (ft)=		0.00	0.31				
Average Velocity (ft/sec)=		0.00	4.05				
T _t (hrs)=		0.00	0.03				
Tc (hrs)=		0.35	0.08				
RESULTS	P	RE-DEVELOPMENT	POST-DEVELOPMENT				
Site Impervious Surface Area (Ac) =		0.08	1.95				
Lot Impervious Surface Area (Ac) =		0.08	0.00				
1-year, 24-hour storm (Peak Flow)							
Volume of runoff (ft ³) =		4,285	23,260				
Volume change (ft³) =		18,	975				
Runoff (inches) = Q*=		0.3462	1.8745				
Peak Discharge (cfs)= Q=		0.5689	10.5668				
Composite Curve Number (DA)=		58	84				
Composite Curve Number (Site only)=		56	84				
DISCONNECTED IMPERVIOUS - Credit given onl	y to residential development w	th drainage area with less than 30% impervious					
Percent Disconnected Impervious Credit (Residenti	al Only) =						
Disconnected impervious area (Ac) =			0.00				
Drainage Area CN _{adjusted} =		84					
Site Only CN _{adjusted} =			84				
1							

Post-development peak flow exceeds pre-development peak flow for this DA!

DA1 Page 2

Project Name: 7-Eleven

<u>DA SITE SUMMARY</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

SITE SUMMARY							
DRAINAGE AREA SUMMARIES							
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	
Pre-Development (1-year, 24-hour storm)							
Runoff (in)= Q^* =	0.346						
Peak Flow (cfs)=Q _{post} =	0.569						
Post-Development (1-year, 24-hour storm)							
Proposed Impervious Surface (acre) =	1.95						
Runoff (in)= Q^* =	1.874						
Peak Flow (cfs)=Q _{post} =	10.567						
TARGET CURVE NUMBER (TCN) - Residential Only							
SITE \SOIL COMPOSITION							
HYDROLOGIC SOIL GROUP	<u>Sit</u>	e Area	-	<u>%</u>	<u>Targ</u>	et CN	
Α	(0.00	0	1%	<u>N</u>	<u>/A</u>	
В	;	3.08	10	0%	N/A		
С	(0.00	0	1%	<u>N/A</u>		
D	(0.00	0% <u>N/A</u>			<u>/A</u>	
Total Site Area (acres) =	3.08						
Zoning =	General Business						
Target Curve Number (TCN) =	N/A						
% Impervious =	63%						
Post Development CN _{adjusted} =	84						
Required Volume to be Managed (TCN)= ft ³ =	. N/A						
SITE NITROGEN AND PHOSPHORUS LOADING							
Nitrogen and Phosphorus Targets (Based on Regulatory Watershed)							
Target Nitrogen Load (lb/ac/yr)=			3.6	6			
Target Phosphorus Load (Falls and Jordan Lakes Only) (lb/ac/yr)=			N/A				
% N Loading Reduction Option for Expansions (Falls and Jordan Lakes Only) =			N/A	4			
% Loading Reduction Nitrogen Target (Falls and Jordan Lakes Only) (lb/ac/yr)=			N//	4			
% P Loading Reduction Option for Expansions (Falls and Jordan Lakes Only) =	N/A						
% Loading Reduction Phosphorus Target (Falls and Jordan Lakes Only) (lb/ac/yr)=			N//	4			
Pre Development Nitrogen and Phosphorus Load							
Total Nitrogen (lb/ac/yr)=			1.0				
Total Phosphorus (lb/ac/yr)=			N/A	Α			
Post Development Nitrogen and Phosphorus Load							
Total Nitrogen (lb/ac/yr)=			9.9				
Total Phosphorus (lb/ac/yr)=			N/A	Α			

SITE SUMMARY Page 1

Project Name:	7-Eleven

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES	AND ADJUSTMENTS											
DA1 Site Acreage=					3.08							
DA1 Off-Site Acreage=					0.34							
Total Required Storage Volume for Site TCN Requirement (ft ³)=												
Will site use underground water harvesting?	No	Enter %	Enter % volume reduction in decimal form=					Note: Supporting information/details should be submitted to demonstrate water usage.				
ENTER AREA TREATED BY BMP												
Land Use (acres)	Sub-DA1(a) (Ac)			DA1(b) Ac)		DA1(c)		DA1(d) Ac)		DA1(e) Ac)	
Commercial		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Parking lot		1.37										
Roof		0.32			ļ		ļ		ļ			
Open/Landscaped		0.56	İ				i]		: 	
Industrial		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
		One	OII SILC	Oile	On site	Oile	OII 3IIC	Oile	On site	Oile	Oll-Site	
Parking lot			<u> </u>						!		!	
Roof			!		<u> </u>		<u> </u>		<u> </u>		<u> </u> !	
Open/Landscaped		011	0" "	0::	0" "	0':	0" "	0':	0" "	011	0" "	
Transportation		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
High Density (interstate, main)							<u> </u>				; 	
High Density (Grassed Right-of-ways)					<u> </u>				<u> </u>			
Low Density (secondary, feeder)		0.12	0.21									
Low Density (Grassed Right-of-ways)		0.03	0.01									
Rural			į		<u> </u>		į		<u>į </u>		į	
Rural (Grassed Right-of-ways)					<u>[</u>		<u> </u>		<u> </u>		<u> </u>	
Sidewalk		0.15										
Misc. Pervious		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Managed pervious					į							
Unmanaged (pasture)			1								!	
Woods (not on lots)		0.20	0.12		<u> </u>				<u> </u>		ļ	
Residential		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Roadway												
Grassed Right-of-ways					i		 		i		 	
Driveway												
Parking lot					<u> </u>		<u> </u>		:		<u> </u>	
Roof												
Sidewalk			İ		İ				j		İ	
Lawn					<u> </u>				<u> </u>			
Managed pervious			İ		i		: 		i i		: i	
Woods (on lots)			-		<u> </u>		<u> </u>		 :		! ! !	
Land Taken up by BMP		0.33							<u> </u>			
JURISDICTIONAL LANDS		Site	Off-site	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Natural wetland												
Riparian buffer (Zone 1 only)			İ				<u> </u>		<u> </u>		<u> </u>	
(Totals (Ac)=	3.08	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Sub-DA1(a) BMP(s)	, ,											
Cab DAT(a) Dim (b)			1		1	l	I	1	1	1	I	
Device Name (As Shown on Plan)	Device Type	Water Quality Volume (c.f.)	Inflow N EMC (mg/L)	Total Inflow N (lb/ac/yr)	Inflow P EMC (mg/L)	Total Inflow P (lb/ac/yr)	Outflow N EMC (mg/L)	Total Outflow N (lb/ac/yr)	Outflow P EMC (mg/L)	Total Outflow P (lb/ac/yr)	Provided Volume Managed (c.f.)	
Constructed Wetland	Wetland		1.35	10.00	0.24	1.81	1.11	6.60	0.13	0.79	9,812	
		7,678										
Outf	low Total Nitrogen (lb/ac/yr)=	6	.60		I	Outflo	w Total Ph	osphorus	(lb/ac/yr)=	0	.79	
	• •	i								1		

If Sub-DA1(c) is connected to upstream sub-basin(s), select all contributing sub-basin(s from doubtown menus). Device Name (As Shown on Plan)	Sub-DA1(b) BMP(s)											
Device Name (As Shown on Plan) Device Type Outlier (C.1) Outlie		pasin(s), select all contributing	sub-basin	(s from								
Device Name (As Shown on Plan) Device Type Country	dropdown menus):											
Sub-DA1 (c) BMP(s) If Sub-DA1 (c) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitro	Device Name (As Shown on Plan)	Device Type	Quality Volume	EMC	Inflow N	EMC	Inflow P	N EMC	Outflow N	P EMC	Outflow P	Provided Volume Managed (c.f.)
Sub-DA1 (c) BMP(s) If Sub-DA1 (c) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitro												
Sub-DA1 (c) BMP(s) If Sub-DA1 (c) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitro												
Sub-DA1 (c) BMP(s) If Sub-DA1 (c) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Device Name (As Shown on Plan) Device Type Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitrogen (libiacry): Outlow Total Nitro												
## Device Name (As Shown on Plan) Device Type Device Type Device Name (As Shown on Plan) Device Type Device Type Device Name (As Shown on Plan) Device Type Device Type Device Name (As Shown on Plan) Device Type Device Name (As Shown on Pl	Outf	low Total Nitrogen (lb/ac/yr)=					Outflov	v Total Ph	osphorus (lb/ac/yr)=		
Device Name (As Shown on Plan) Device Type Device Name (As Shown on Plan) Device Type Device Name (As Shown on	Sub-DA1 (c) BMP(s)											
Device Name (As Shown on Plan) Device Type Outflow Total Nitrogen (Ib/ac/yr) Device Type Device Type	If Sub-DA1(c) is connected to upstream sub-b	asin(s), select all contributing	sub-basin	(s):								
Sub-DA1 (d) BMP(s) If Sub-DA1 (d) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Phosphorus (lb/ac/yr) Cutflow Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (Name (As Shown on Plan) Device Name (As Shown on Plan) Device Type Outflow Now Name (Name (Name Name Name Name Name Name Name Name	Device Name (As Shown on Plan)	Device Type	Quality Volume	EMC	Inflow N	EMC	Inflow P	N EMC	Outflow N	P EMC	Outflow P	Provided Volume Managed (c.f.)
Sub-DA1 (d) BMP(s) If Sub-DA1 (d) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Phosphorus (lb/ac/yr) Cutflow Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (Name (As Shown on Plan) Device Name (As Shown on Plan) Device Type Outflow Now Name (Name (Name Name Name Name Name Name Name Name												
Sub-DA1 (d) BMP(s) If Sub-DA1 (d) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Phosphorus (lb/ac/yr) Cutflow Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (Name (As Shown on Plan) Device Name (As Shown on Plan) Device Type Outflow Now Name (Name (Name Name Name Name Name Name Name Name												
Sub-DA1 (d) BMP(s) If Sub-DA1 (d) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow P Device Name (As Shown on Plan) Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Phosphorus (lb/ac/yr) Cutflow Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Total Nitrogen (lb/ac/yr) Cutflow Now Name (As Shown on Plan) Device Type Outflow Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (As Shown on Plan) Device Type Outflow Now Name (Name (As Shown on Plan) Device Name (As Shown on Plan) Device Type Outflow Now Name (Name (Name Name Name Name Name Name Name Name												
If Sub-DA1(d) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan)	Outflow Total Nitrogen (lb/ac/yr)=			Outflow Total Phosphorus (lb/ac/yr)=								
Device Name (As Shown on Plan) Device Type Device Type Device Type Device Type Device Type Device Type Device Name (As Shown on Plan) Device Type Device Type Device Type Device Type Device Name (As Shown on Plan) Device Type Device Name (As Shown on Plan) Device Type Device Type Device Type Device Type Device Type Device Type Device Name (As Shown on Plan) Device Type D	Sub-DA1 (d) BMP(s)											
Device Name (As Shown on Plan) Device Type Outflow (c.f.) Device Type Outflow Total Nitrogen (ib/ac/yr) = Outflow Total Nitrogen (ib/ac/yr)	If Sub-DA1(d) is connected to upstream sub-b	easin(s), select all contributing	sub-basin	(s):								
Sub-DA1 (e) BMP(s) If Sub-DA1(e) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) EMC (lb/ac/yr) (lb/ac/yr) (lb/ac/yr) Outflow P EMC (mg/L) (lb/ac/yr) Outflow N EMC (mg/L) (lb/ac/yr) P EMC (mg/L) (lb/ac/yr) Outflow Total Nitrogen (lb/ac/yr)= DA1 BMP SUMMARY Total Volume Treated (c.f.)= DA1 Outflow Total Phosphorus (lb/ac/yr)= 6.60 DA1 Outflow Total Phosphorus (lb/ac/yr)= 0.79	Device Name (As Shown on Plan)	Device Type	Quality Volume	EMC	Inflow N	EMC	Inflow P	N EMC	Outflow N	PEMC	Outflow P	Provided Volume Managed (c.f.)
Sub-DA1 (e) BMP(s) If Sub-DA1(e) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) Device Type (c.f.) Device Type Outflow P EMC (mg/L) (lb/ac/yr) Outflow P EMC (mg/L) (lb/ac/yr) Outflow N EMC (mg/L) (lb/ac/yr) Outflow P EMC (mg/L) (lb/ac/yr) P FMC (mg/L) (lb/ac/yr) Outflow Total Phosphorus (lb/ac/yr) DA1 BMP SUMMARY Total Volume Treated (c.f.)= DA1 Outflow Total Nitrogen (lb/ac/yr)= Outflow Total Phosphorus (lb/ac/yr)=												
Sub-DA1 (e) BMP(s) If Sub-DA1(e) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) EMC (lb/ac/yr) (lb/ac/yr) (lb/ac/yr) Outflow P EMC (mg/L) (lb/ac/yr) Outflow N EMC (mg/L) (lb/ac/yr) P EMC (mg/L) (lb/ac/yr) Outflow Total Nitrogen (lb/ac/yr)= DA1 BMP SUMMARY Total Volume Treated (c.f.)= DA1 Outflow Total Phosphorus (lb/ac/yr)= 6.60 DA1 Outflow Total Phosphorus (lb/ac/yr)= 0.79												
Sub-DA1 (e) BMP(s) If Sub-DA1(e) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) EMC (lb/ac/yr) (lb/ac/yr) (lb/ac/yr) Outflow P EMC (mg/L) (lb/ac/yr) Outflow N EMC (mg/L) (lb/ac/yr) P EMC (mg/L) (lb/ac/yr) Outflow Total Nitrogen (lb/ac/yr)= DA1 BMP SUMMARY Total Volume Treated (c.f.)= DA1 Outflow Total Phosphorus (lb/ac/yr)= 6.60 DA1 Outflow Total Phosphorus (lb/ac/yr)= 0.79												
Sub-DA1 (e) BMP(s) If Sub-DA1(e) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) Device Name (As Shown on Plan) Device Type Device Type Water Quality Volume (mg/L) (mg/L) Inflow N EMC (mg/L) (mg/L) (mg/L) Device Type	Outflow Total Nitrogen (lb/ac/vr)=			Outflow Total Phosphorus (lb/ac/yr)=								
If Sub-DA1(e) is connected to upstream sub-basin(s), select all contributing sub-basin(s): Device Name (As Shown on Plan)										• • •		
Device Name (As Shown on Plan) Device Type Water Quality Volume (c.f.) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow P EMC (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Inflow N (mg/L) Infl		pasin(s), select all contributing	sub-basin	(s):								
DA1 BMP SUMMARY Total Volume Treated (c.f.)= 9812	·		Water Quality Volume	Inflow N EMC	Inflow N	EMC	Inflow P	N EMC	Outflow N	P EMC	Outflow P	Provided Volume Managed (c.f.)
Total Volume Treated (c.f.)= DA1 BMP SUMMARY Total Volume Treated (c.f.)= 9812 DA1 Outflow Total Nitrogen (lb/ac/yr)= 6.60 DA1 Outflow Total Phosphorus (lb/ac/yr)= 1-year, 24-hour storm												
Total Volume Treated (c.f.)= DA1 BMP SUMMARY Total Volume Treated (c.f.)= 9812 DA1 Outflow Total Nitrogen (lb/ac/yr)= 6.60 DA1 Outflow Total Phosphorus (lb/ac/yr)= 1-year, 24-hour storm												
DA1 BMP SUMMARY Total Volume Treated (c.f.)= 9812												
DA1 BMP SUMMARY Total Volume Treated (c.f.)= 9812	Outf	ilow Total Nitrogen (lb/ac/yr)=		<u>l</u>		1	Outflov	v Total Ph	osphorus (lb/ac/yr)=		
Total Volume Treated (c.f.)= DA1 Outflow Total Nitrogen (lb/ac/yr)= DA1 Outflow Total Phosphorus (lb/ac/yr)= 0.79 1-year, 24-hour storm												
DA1 Outflow Total Nitrogen (lb/ac/yr)= 6.60 DA1 Outflow Total Phosphorus (lb/ac/yr)= 0.79 1-year, 24-hour storm		Total Volume Treated (c.f.)=					98	312				
DA1 Outflow Total Phosphorus (lb/ac/yr)= 0.79 1-year, 24-hour storm	DA1 Outf		6.60									
	DA1 Outflow Total Phosphorus (lb/ac/yr)=											
Pre Development Peak Discharge (cfs)= Q _{1-year} = 0.57	1-year, 24-hour storm											
•	Pre Development Peak Discharge (cfs)= Q _{1-year} =			0.57								
Post BMP Peak Discharge (cfs)= Q _{1-year} = 0.19	Post BMP Peak Discharge (cfs)= Q _{1-year} =			0.19								

Page 2

Project Name:	7-Eleven

DA SITE SUMMARY BMP CALCULATIONS

BMP SUMMARY								
DRAINAGE AREA SUMMARIES								
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6		
Post-Development (1-year, 24-hour storm)								
Peak Flow (cfs)=Q _{1-year} =	10.57							
Post-Development with BMPs (1-year, 24-hour storm)								
% Impervious =	63%							
Volume Managed (CF)=	9,812							
Post BMP Peak Discharge (cfs)= Q _{1-year} =	0.19							
Have Target Curve Number Requirements been met?	N/A							
Pre Development Nitrogen and Phosphorus Load								
Total Nitrogen (lb/ac/yr)=	1.08							
Total Phosphorus (lb/ac/yr)=	N/A							
Post Development Nitrogen and Phosphorus Load								
Total Nitrogen (lb/ac/yr)=	9.94							
Total Phosphorus (lb/ac/yr)=	N/A							
Post-BMP Nitrogen Loading								
Outflow Total Nitrogen (lb/ac/yr)=	6.60							
Outflow Total Phosphorus (lb/ac/yr)=	0.79							
Has site met the Target?	NO							
Has site met requirements for offsetting?	YES							

Curve Number Calculation (CN) Pre-Developed Conditions (Overall Site)								
Drainage Area (acres	<u>):</u>	3.41						
Existing Soil Groups:	<u>Soil Group</u> B	<u>Map Symbol</u> WeB	<u>Soil Descriptio</u> Wedowee Sandy L	<u>Acres</u> 3.41	Percent of DA 100%			
Existing Land Uses:	<u>Land Use Description</u> Wooded - Good Impervious Area		Existing Soil Group B			Weighted CN 51.9 5.4		
				Cumulat	57.4			

	Curve Number Calculation (CN) Post-Developed Conditions (Stormwater Wetland)										
Drainage Area (acres	<u>):</u>	3.42									
Existing Soil Groups:	<u>Soil Group</u> B	<u>Map Symbol</u> WeB	<u>Soil Descriptio</u> Wedowee Sandy I		<u>Acres</u> 3.42	Percent of DA 100%					
Existing Land Uses:	<u>Land (</u> Wooded - Goo Open Space - (Impervious Are	Good	Existing Soil Group B B	<u>Acres</u> 0.32 0.94 2.16	<u>Curve #</u> 55 61 98	Weighted CN 5.2 16.8 61.9					
				Cumulat	ive Curve # =	83.8					

	Curve Number Calculation (CN) Post-Developed Bypass Conditions (Stormwater Wetland)										
Drainage Area (acres)	<u>):</u>	0.45									
Existing Soil Groups:	<u>Soil Group</u> B	<u>Map Symbol</u> WeB	<u>Soil Descriptio</u> Wedowee Sandy I	_	<u>Acres</u> 0.45	Percent of DA 100%					
Existing Land Uses:	<u>Land U</u> Open Space - Impervious Ar		Existing Soil Group B	Acres 0.16 0.29	Curve # 61 98	Weighted CN 21.6 63.3 84.9					

Proposed Stormwater Wetland

Project Information

Project Name: 7-Eleven (Zebulon)
Project #: 220163-01-002

Designed by: MCB Date: 9/27/2023
Revised by: Date:
Checked by: Date:

Site Information

Sub Area Location: Drainage To Proposed Stormwater Wetland

Drainage Area (DA) = 3.42 Acres 148,987 sf

Impervious Area (IA) = 2.16 Acres 94,097 sf

Percent Impervious (I) =

Required WQv Storage Volume

Design Storm = 1 inch (Non-Coastal county)

Determine Rv Value = 0.05 + .009 (I) = 0.618 in/in

Storage Volume Required = 7,678 cf (above Permanent Pool)

%

63.16

Surface Area Requirements:

Storage Volume Required = 7,678 cf (above Permanent Pool)

Maximum ponding depth = 1.25 ft

Surface Area Required= 6,142 sf Surface Area Provided= 6850 sf

Breakdown of Surface Area:

Forebay 850.00 sf 12.4% of Wetland Surface Area (10-15%)

Non-Forebay Deep Pools 645.00 sf 9.4% of Wetland Surface Area (5% to 10%)

Shallow Water (low marsh) 2520.00 sf

36.8% of Wetland Surface Area (40%)

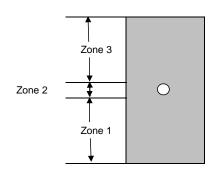
Shallow Land (high marsh) 2085.00 sf 30.4% of Wetland Surface Area (30% to 45%)

Total 6,100 sf 89.1% of Wetland Surface Area

STORMWATER WETLAND INCREMENTAL DRAWDOWN METHOD-Water Quality Volume

Project Information

 Project Mame:
 7-Eleven (Zebulon)


 Project #:
 220163-01-002

 Designed by:
 MCB
 D

Designed by: MCB Date: 9/27/2023 Checked by: Date:

Water Quality Orifice

* Incremental Determination of Water Quality Volume Drawdown Time

$$Q_3 = 0.0437 C_D * D^2 (Z-D/24-Ei)^{\Lambda^{(1/2)}}$$

$$Q_2 = 0.372 C_D * D*(Z-Ei)^{(3/2)}$$

$$Q_1 = 0$$

	Incremental Drawdown Method												
Countour	Contour Area	Incremental Volume	Stage, Z	Zone	Q	Drawdown Time							
	sq ft	cu ft	ft		cfs	min							
329.70	6,850	0	0.00	0.00	0.000								
330.00	7260	2,116	0.30	3.00	0.013	2,646							
330.95	8940	7,695	1.25	3.00	0.029	4,450							
Total		9,811				7,096							

Drawdown Time = Incremental Volume / Q / 60sec/min

Summary

Total Volume = 9,811 cf
Total Time = 7,096 min
Total Time = 4.93 days

Proposed Stormwater Wetland

Anti-Floatation Calculations for OCS

Project Information

Project Name: 7-Eleven (Zebulon) Project #: 220163-01-002

Designed by: MCB Date: 9/27/2023 Revised by: Date: Checked by: Date:

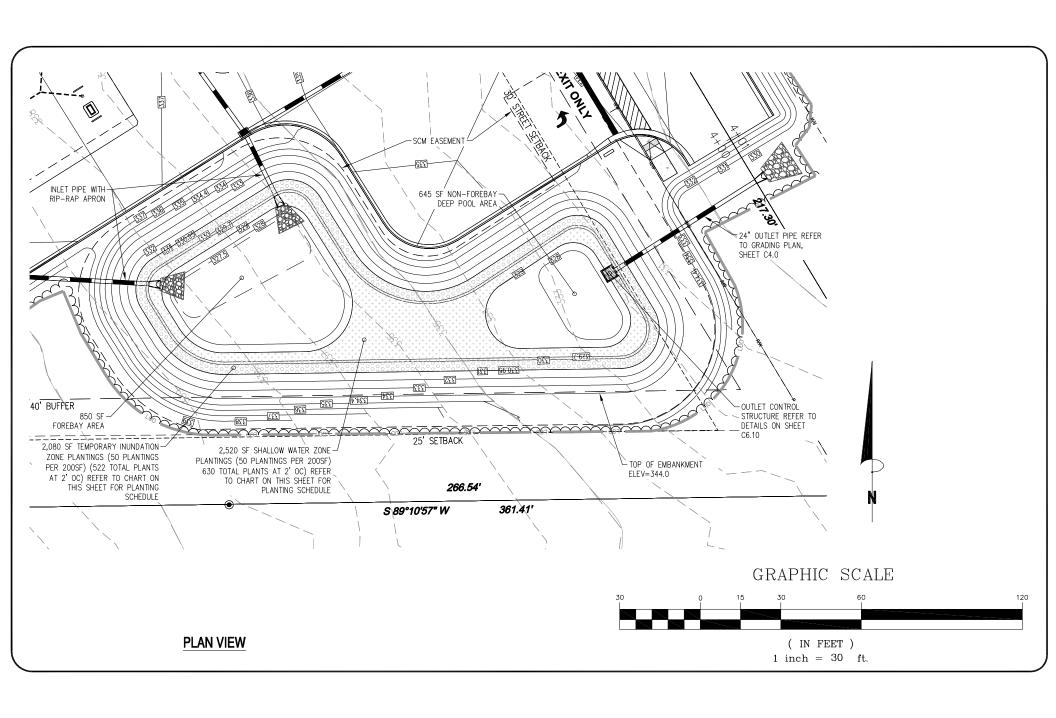
Site Information

Sub Area Location: Drainage to Proposed Stormwater Wetland Drainage Area (DA) = 3.42 Acres

Impervious Area (IA) = 2.16 Acres
Percent Impervious (I) = 61.99 % (Drainage Area)

Anti-Flotation Device

4' x 4' Outlet Structure


Area: 16.0 sf Volume: 64.0 cf (Water Displaced - Top of Pond to Bottom of Pond)

Weight: 3994 lbs

Factor of Safety WT Reg'd of Anti-Flotation Device: 4,792 lbs

Volume of Concrete Req'd: 31.9 cf (Unit WT of Concrete = 150 pcf)

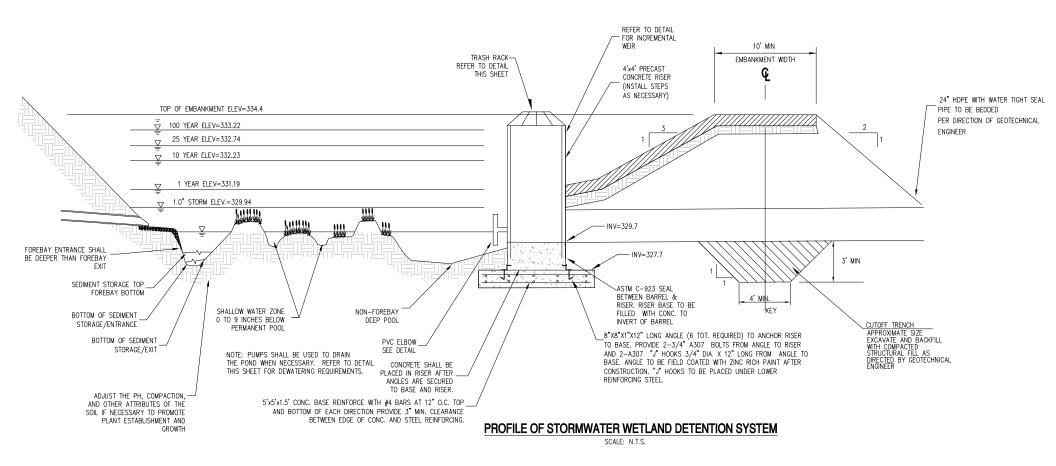
> $(4'x4' \text{ riser } x \ 4.0' = 64.0\text{cf}, \ 5'x5' \text{ footing } x \ 1.5' = 37.5\text{cf})$ Volume Provided: 101.5 cf

	STAGE/STORAGE TABLE											
STAGE (FT)	TAGE (FT) ELEVATION (FT) CONTOUR AREA INCREMENTAL STORAGE (CF) TOTAL STORAGE (CF)											
0.0	329.7	6,850	0	0								
0.3	330.0	7,260	2,116	2,116								
1.25	330.95	8,940	7,695	9,812 (WQV)								
1.3	331.0	9,020	449	10,260								
2.3	332.0	10,490	9,755	20,015								
3.3	333.0	12,020	11,255	31,270								
4.3	334.0	13,600	12,810	44,080								

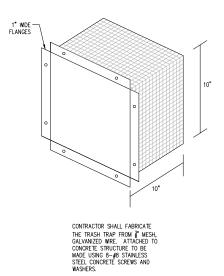
STORMWATER MANAGEMENT DESIGN STORMWATER WETLAND:

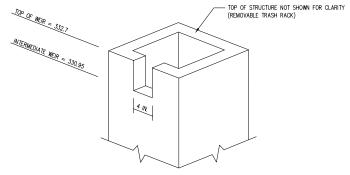
RIVER BASIN: RECEIVING STREAM: STREAM INDEX: STREAM CLASS: HUC: NEUSE LITTLE CREEK 27-86-2-4 C;NSW

03020203 PROJECT COORDINATES: 35.836261N, -78.321664W

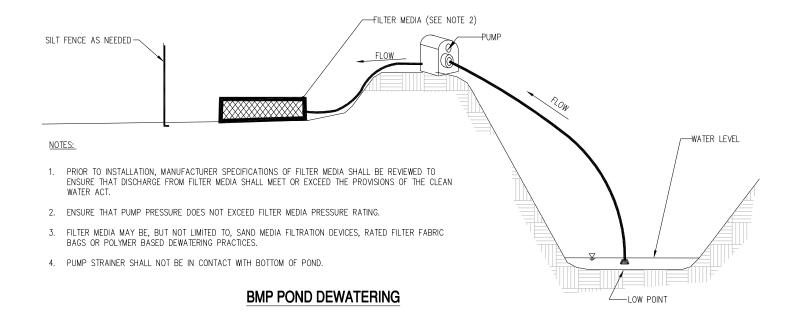

POND DESIGN SUMMARY
DRAINAGE AREA TO POND:
SITE IMPERVIOUS AREA TO POND:
OFF—SITE DESIGN IMPERVIOUS AREA TO POND:
TOTAL DESIGN IMPERVIOUS AREA TO POND: 3.42 ACRES 1.78 ACRES 0.38 ACRES 2.16 ACRES

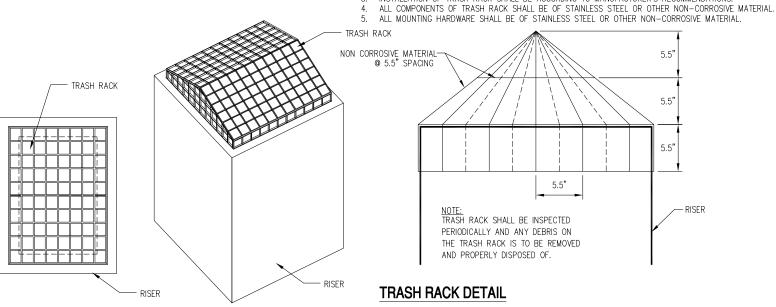
POST-DEVELOPED POST DEVELOPED BYPASS COMBINED

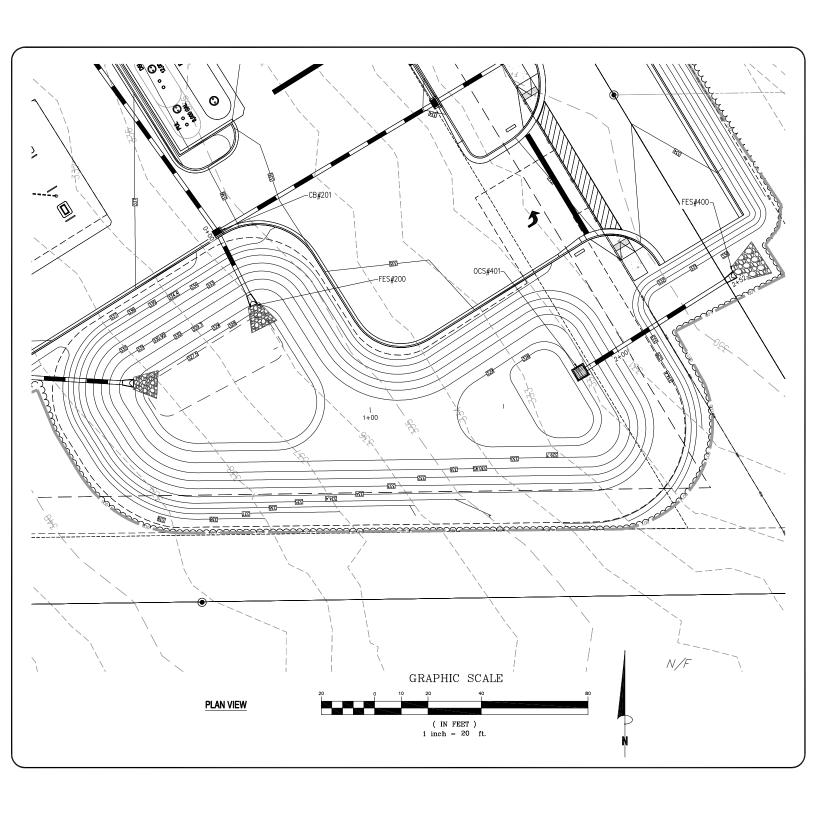

3.42 AC POST DEVELOPED BYPASS COMBINED PRE-DEVELOPED TO POND 3.41 AC DRAINAGE AREA: CURVE NUMBER: TIME OF CONCENTRATION: 84 5 MIN 85 10 MIN 21 MIN 1.0" STORM EVENT: 1-YEAR STORM EVENT: 10-YEAR STORM EVENT: 25-YEAR STORM EVENT: 0.326 CFS 8.034 CFS 19.14 CFS 24.37 CFS 0.012 CFS 0.131 CFS 1.280 CFS 2.562 CFS 0.315 CFS 3.965 CFS 6.394 CFS 0.950 CFS 2.239 CFS 2.845 CFS 1.081 CFS 3.519 CFS 5.407 CFS 100-YEAR STORM EVENT: 11.04 CFS 3.872 CFS 33.24 CFS 17.25 CFS 21.12 CFS

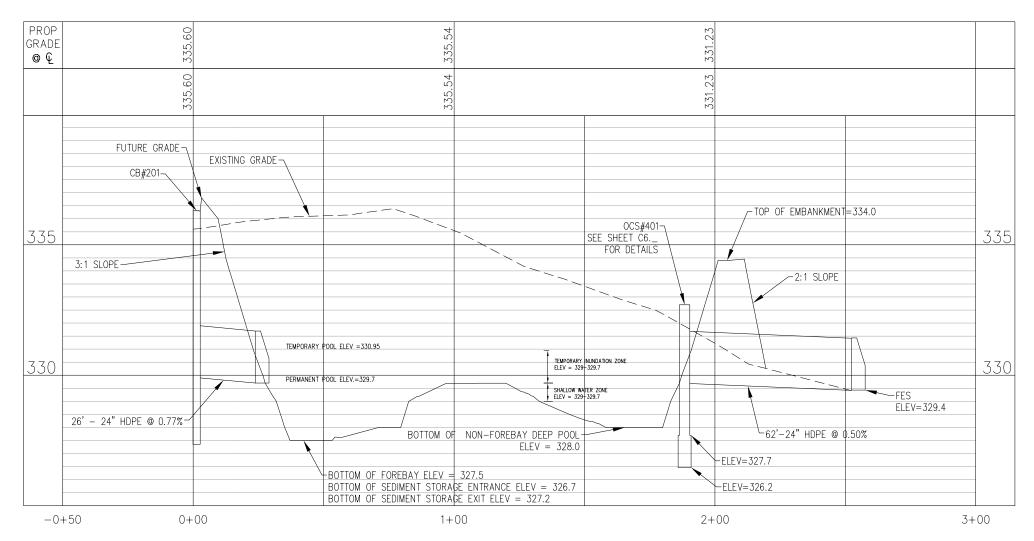

	TYPICAL SHALLOW WATER PLANTING SCHEDULE												
+ + +	SCIENTIFIC NAME	COMMON NAME	PLANTING ZONE	QUANTITY	HEIGHT	IDEAL DEPTH	NURSERY CONTAINER TYPE	SPACING	PLANTING SEASON				
+ + + +	Juncus effusus	Common Rush	SHALLOW WATER	210	9" FOLIAGE HEIGHT	0-2"	4" TEA POT	2° O.C.	SPRING/SUMMER				
+ + +	Litaeopeis carolinensis	Carolina Grasswort	SHALLOW WATER 210 9" FOLIAGE HEIGHT 0-9" 4" TEA POT 2' O.C.						SPRING/SUMMER				
+ + + -	Schoenoplectus		offsterm Bulrush SHALLOW WATER 210 9" FOLIAGE HEIGHT 0-6" 4" TEA POT 2' O.C. SPRING/SUMMER										

TYPICAL TEMPORARY INUNDATION ZONE PLANTING SCHEDULE												
SCIENTIFIC NAME COMMON NAME PLANTING ZONE QUANTITY HEIGHT NURSERY CONTAINER TYPE SPACING PLANTING SEASON												
Eutrochium dubium	Coastal Joy Pye Weed	SHALLOW LAND 174		9" FOLIAGE HEIGHT	4" TEA POT	2° 0.C.	SPRING/SUMMER					
Eupatorium erfoliatum	Boneset SHALLOW LAND 174 9" FOLIAGE HEIGHT 4" TEA POT 2' O.C. SPRIN											
Rhynchospora colorata	Starrush Whitetop	SHALLOW LAND	174	9" FOLIAGE HEIGHT	4" TEA POT	2° 0.C.	SPRING/SUMMER					






OUTLET CONTROL STRUCTURE - INCREMENTAL WEIR


SCALE: N.T.S.

- SEE DESIGN PLANS FOR SPECIFIED DIMENSIONS OF RISER.
- TRASH RACK DIMENSION CRITERIA SPECIFIED IS APPROXIMATE AND VARIES BY MANUFACTURER.
- INSTALLATION OF TRASH RACK SHALL BE ACCORDING TO MANUFACTURER'S RECOMMENDATIONS.

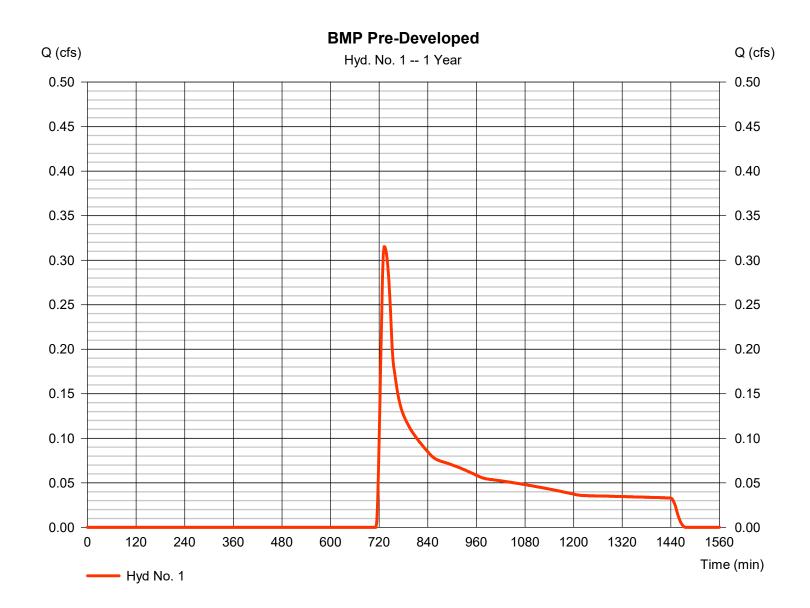
STORMWATER WETLAND PROFILE VIEW

HORIZONTAL SCALE: 1"=30' VERTICAL SCALE: 1"=3'

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.315	2	732	2,864				BMP Pre-Developed
2	SCS Runoff	8.034	2	716	16,222				BMP Post-Developed
3	Reservoir	0.131	2	1084	11,754	2	331.19	12,095	Post Through Detention
4	SCS Runoff	0.950	2	720	2,465				BMP Post-Developed Bypass
7	SCS Runoff	0.326	2	152	1,767				BMP Post-Developed
8	Reservoir	0.012	2	366	1,564	7	329.94	1,662	1.0-in Storm Thru Pond
Sto	rmwater Wet	land-(7-E	leven).gr	ow.	Return F	Period: 1 Ye	ear	Thursday, (09 / 28 / 2023

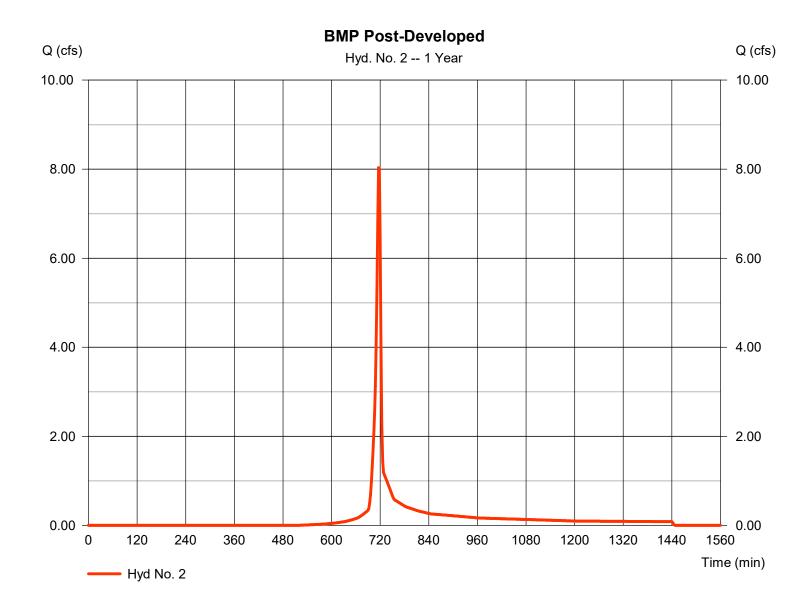

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 1

BMP Pre-Developed

Hydrograph type = SCS Runoff Peak discharge = 0.315 cfsStorm frequency = 1 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 2.864 cuft Drainage area Curve number = 3.410 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 21.00 min = User Total precip. = 2.85 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484

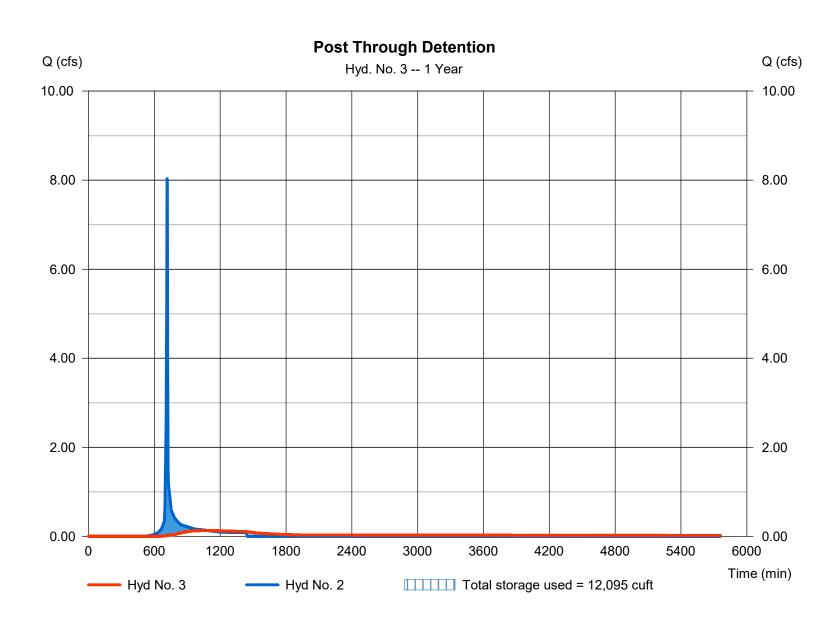

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 2

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 8.034 cfsStorm frequency = 1 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 16.222 cuft Drainage area Curve number = 3.420 ac= 84 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.85 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 3

Post Through Detention

Hydrograph type Peak discharge = 0.131 cfs= Reservoir Storm frequency = 1 yrsTime to peak = 1084 min Time interval = 2 min Hyd. volume = 11,754 cuft Inflow hyd. No. Max. Elevation = 331.19 ft= 2 - BMP Post-Developed = BMP Pond Reservoir name Max. Storage = 12,095 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

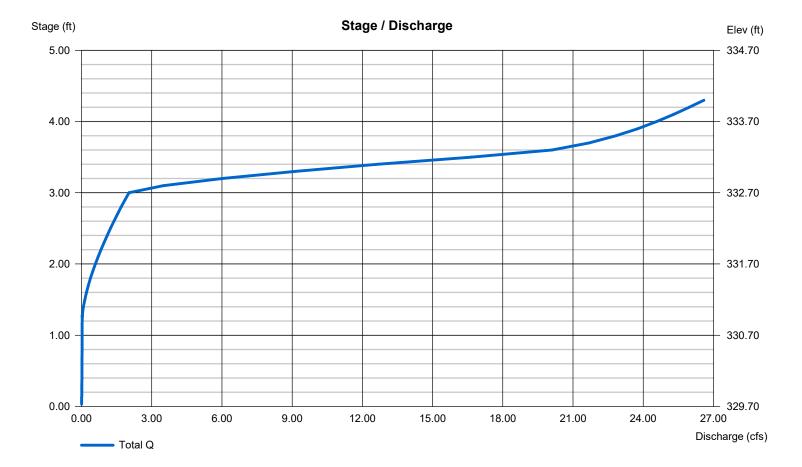
Thursday, 09 / 28 / 2023

Pond No. 1 - BMP Pond

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 329.70 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	329.70	6,850	0	0
0.30	330.00	7,260	2,116	2,116
1.25	330.95	8,940	7,695	9,812
1.30	331.00	9,020	449	10,260
2.30	332.00	10,490	9,755	20,015
3.30	333.00	12,020	11,255	31,270
4.30	334.00	13,600	12,810	44,080

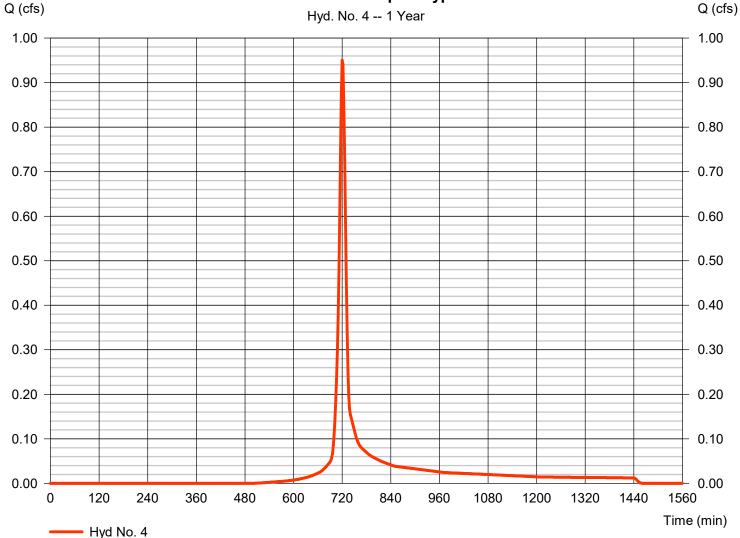
Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	1.00	Inactive	0.00	Crest Len (ft)	= 0.33	15.67	Inactive	Inactive
Span (in)	= 24.00	1.00	0.00	0.00	Crest El. (ft)	= 330.95	332.70	275.25	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	2.60	2.60	3.33
Invert El. (ft)	= 329.70	329.70	0.00	0.00	Weir Type	= Broad	Broad	Broad	
Length (ft)	= 62.00	0.50	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	1.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

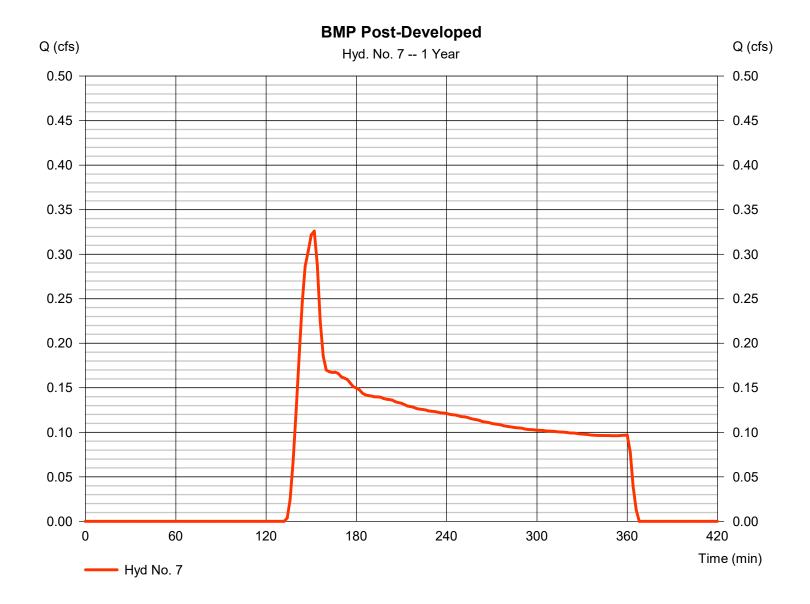
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Thursday, 09 / 28 / 2023

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type = SCS Runoff Peak discharge = 0.950 cfsStorm frequency Time to peak = 720 min = 1 yrsTime interval = 2 min Hyd. volume = 2.465 cuftDrainage area Curve number = 0.450 ac= 85 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 10.00 min = User Total precip. = 2.85 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

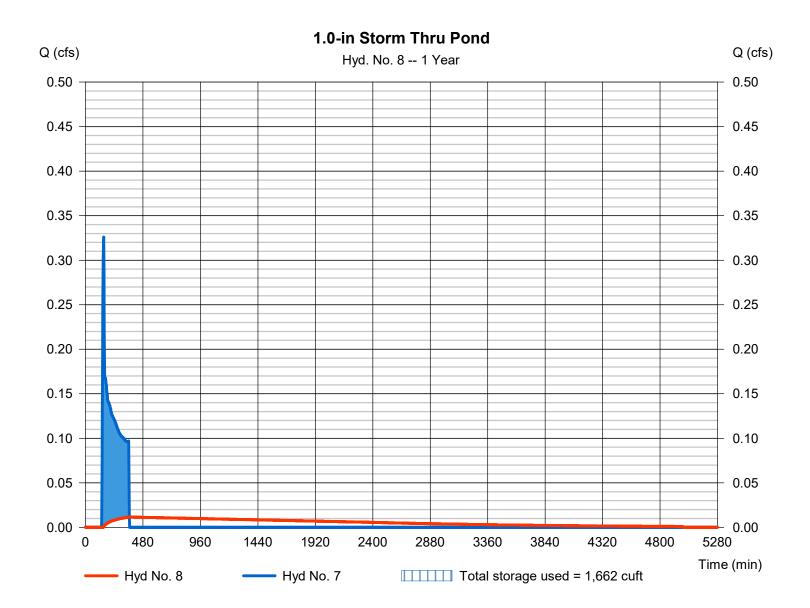

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 7

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 0.326 cfsStorm frequency Time to peak = 152 min = 1 yrsTime interval = 2 min Hyd. volume = 1,767 cuftDrainage area Curve number = 3.420 ac= 84 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 1.00 inDistribution = SCS 6-Hr Storm duration = 6.00 hrsShape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 8

1.0-in Storm Thru Pond

Hydrograph type Peak discharge = 0.012 cfs= Reservoir Storm frequency Time to peak = 366 min = 1 yrsTime interval = 2 min Hyd. volume = 1,564 cuft = 7 - BMP Post-Developed Inflow hyd. No. Max. Elevation = 329.94 ft= BMP Pond Reservoir name Max. Storage = 1,662 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

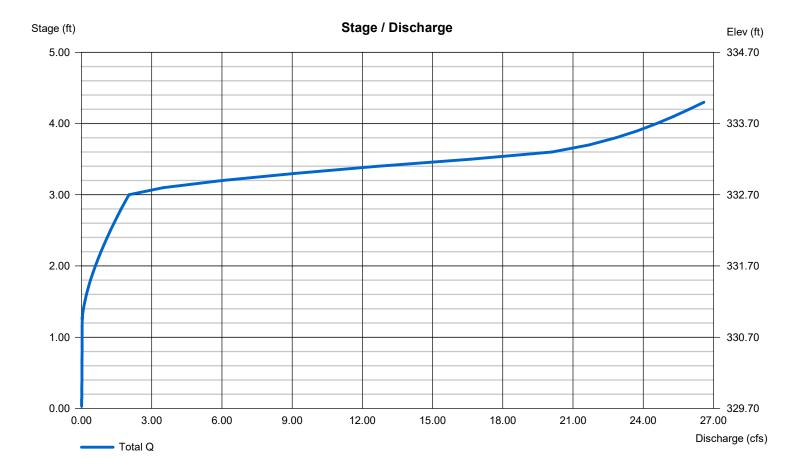
Thursday, 09 / 28 / 2023

Pond No. 1 - BMP Pond

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 329.70 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	329.70	6,850	0	0
0.30	330.00	7,260	2,116	2,116
1.25	330.95	8,940	7,695	9,812
1.30	331.00	9,020	449	10,260
2.30	332.00	10,490	9,755	20,015
3.30	333.00	12,020	11,255	31,270
4.30	334.00	13,600	12,810	44,080

Culvert / Orifice Structures

Weir Structures

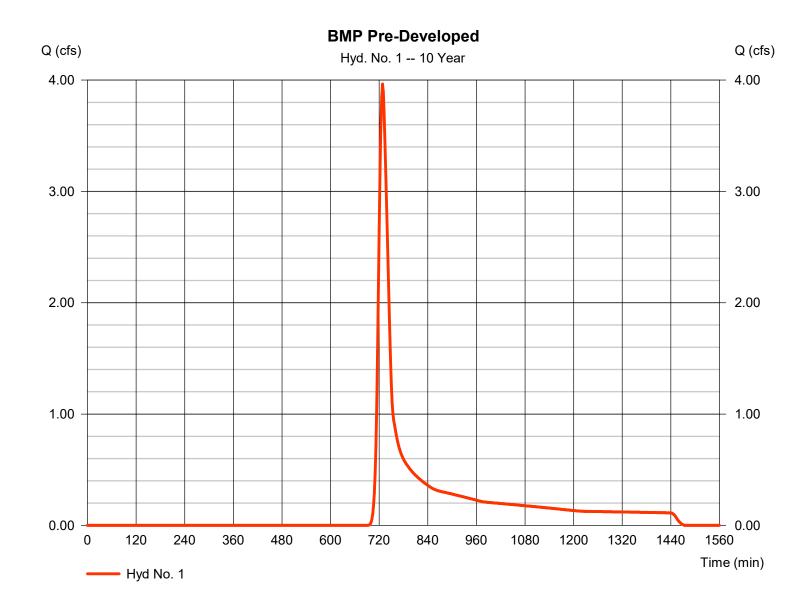
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	1.00	Inactive	0.00	Crest Len (ft)	= 0.33	15.67	Inactive	Inactive
Span (in)	= 24.00	1.00	0.00	0.00	Crest El. (ft)	= 330.95	332.70	275.25	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	2.60	2.60	3.33
Invert El. (ft)	= 329.70	329.70	0.00	0.00	Weir Type	= Broad	Broad	Broad	
Length (ft)	= 62.00	0.50	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	1.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.965	2	728	15,706				BMP Pre-Developed
2	SCS Runoff	19.14	2	716	39,557				BMP Post-Developed
3	Reservoir	1.280	2	754	34,864	2	332.23	22,600	Post Through Detention
4	SCS Runoff	2.239	2	720	5,892				BMP Post-Developed Bypass
7	SCS Runoff	0.000	2	n/a	0				BMP Post-Developed
8	Reservoir	0.000	2	n/a	0	7	329.70	0.000	1.0-in Storm Thru Pond
Sto	rmwater Wet	land-(7-E	leven).gr) DW	Return F	Period: 10 \	 ⁄ear	Thursday, (09 / 28 / 2023

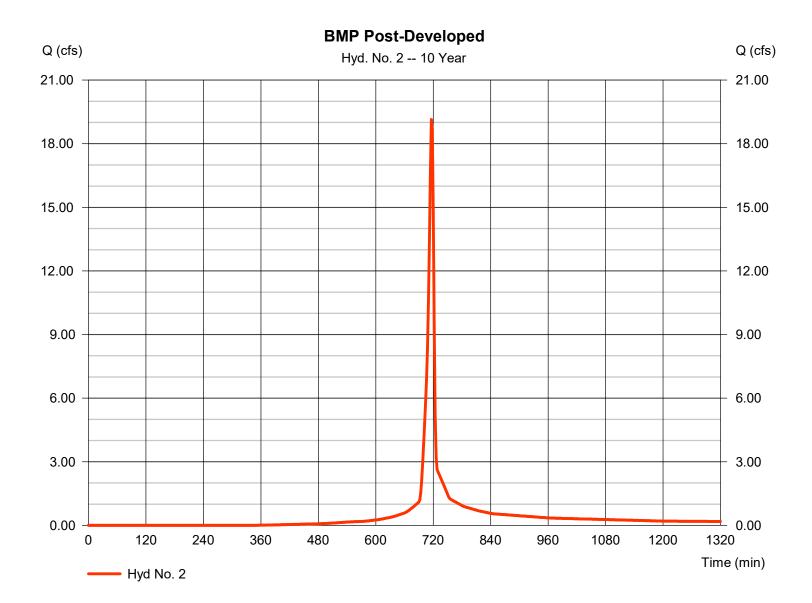

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 1

BMP Pre-Developed

Hydrograph type = SCS Runoff Peak discharge = 3.965 cfsStorm frequency = 10 yrsTime to peak = 728 min Time interval = 2 min Hyd. volume = 15,706 cuftDrainage area Curve number = 58 = 3.410 acBasin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 21.00 min = User Total precip. = 5.14 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

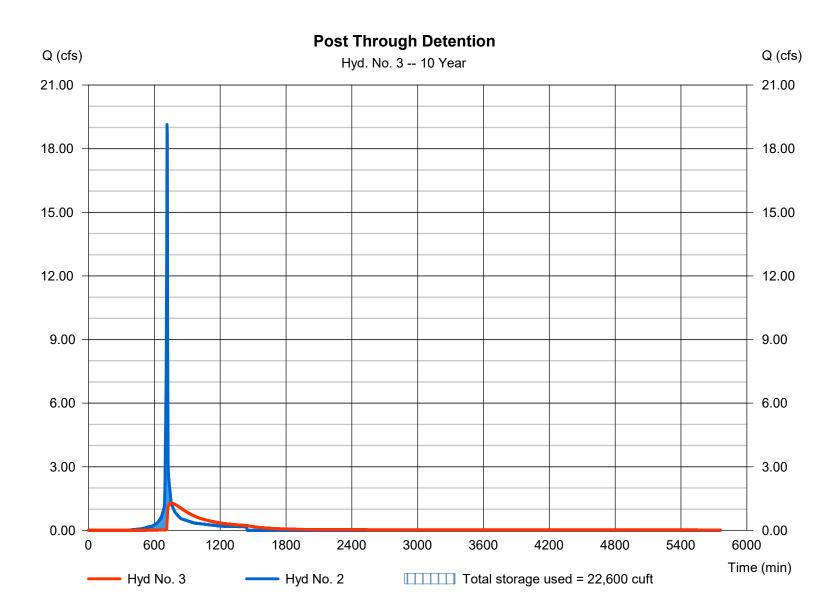

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 2

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 19.14 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 39,557 cuftDrainage area Curve number = 3.420 ac= 84 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.14 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484

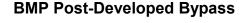

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

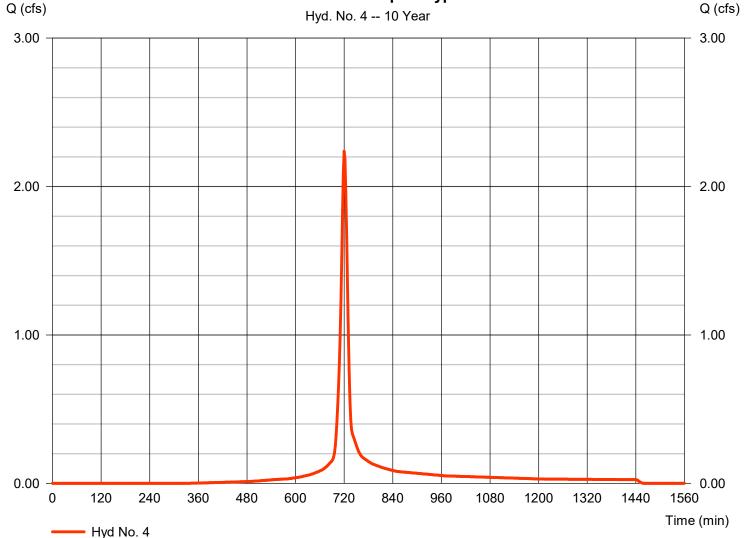
Thursday, 09 / 28 / 2023

Hyd. No. 3

Post Through Detention

Hydrograph type Peak discharge = 1.280 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 754 min Time interval = 2 min Hyd. volume = 34,864 cuft Inflow hyd. No. Max. Elevation = 332.23 ft= 2 - BMP Post-Developed = BMP Pond Reservoir name Max. Storage = 22,600 cuft

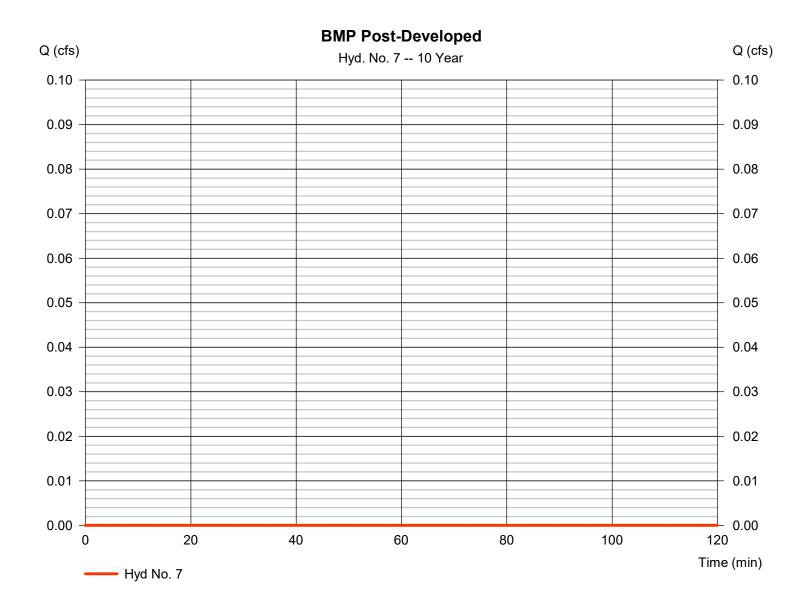

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Thursday, 09 / 28 / 2023

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type = SCS Runoff Peak discharge = 2.239 cfsStorm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 5,892 cuftCurve number Drainage area = 0.450 ac= 85 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 5.14 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

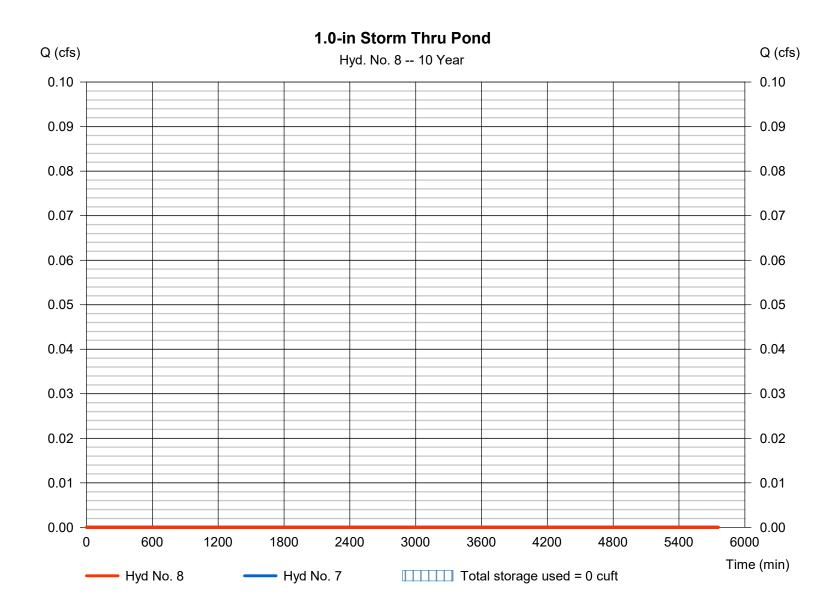

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 7

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 0.000 cfsStorm frequency = 10 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuft Drainage area Curve number = 3.420 ac= 84 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 0.00 inDistribution = SCS 6-Hr Storm duration = 6.00 hrsShape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 8

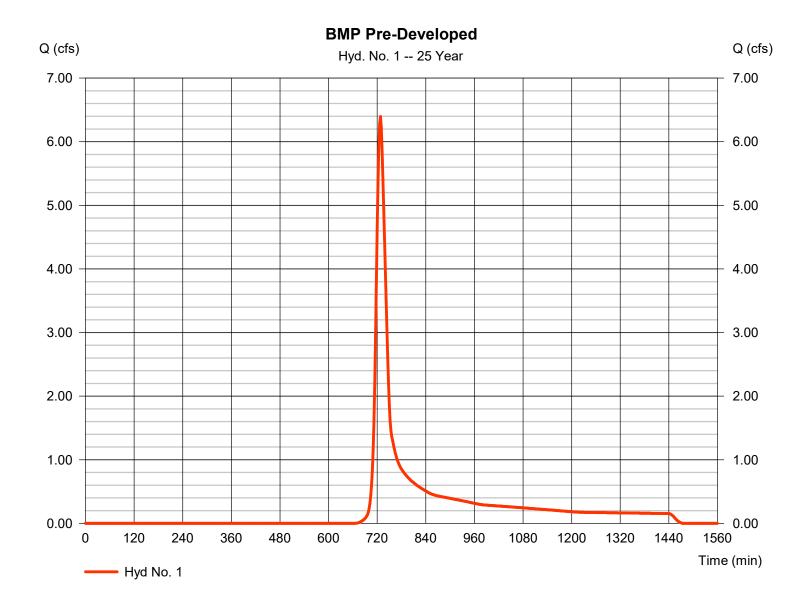
1.0-in Storm Thru Pond

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 10 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. = 7 - BMP Post-Developed Max. Elevation = 329.70 ft= BMP Pond Reservoir name Max. Storage = 0 cuft

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	6.394	2	728	23,720				BMP Pre-Developed
2	SCS Runoff	24.37	2	716	51,024				BMP Post-Developed
3	Reservoir	2.562	2	740	46,287	2	332.74	28,306	Post Through Detention
4	SCS Runoff	2.845	2	720	7,566				BMP Post-Developed Bypass
7	SCS Runoff	0.000	2	n/a	0				BMP Post-Developed
8	Reservoir	0.000	2	n/a	0	7	329.70	0.000	1.0-in Storm Thru Pond
Sto	rmwater Wet	land-(7-E	leven).gp	ow.	Return F	Period: 25 \	/ear	Thursday, (09 / 28 / 2023

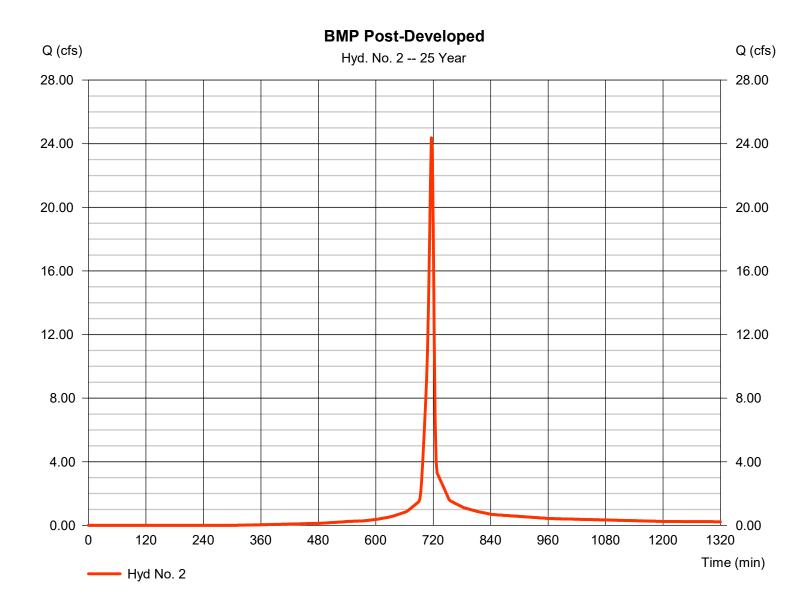

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 1

BMP Pre-Developed

Hydrograph type = SCS Runoff Peak discharge = 6.394 cfsStorm frequency = 25 yrs Time to peak = 728 min Time interval = 2 min Hyd. volume = 23,720 cuftDrainage area Curve number = 3.410 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 21.00 min = User Total precip. = 6.20 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

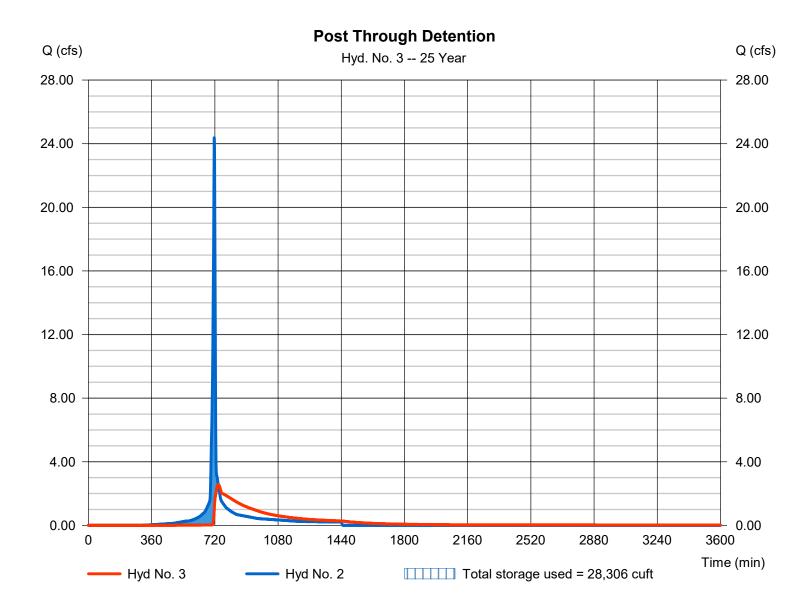

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 2

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 24.37 cfsStorm frequency = 25 yrs Time to peak = 716 min Time interval = 2 min Hyd. volume = 51,024 cuft Drainage area Curve number = 3.420 ac= 84 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.20 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

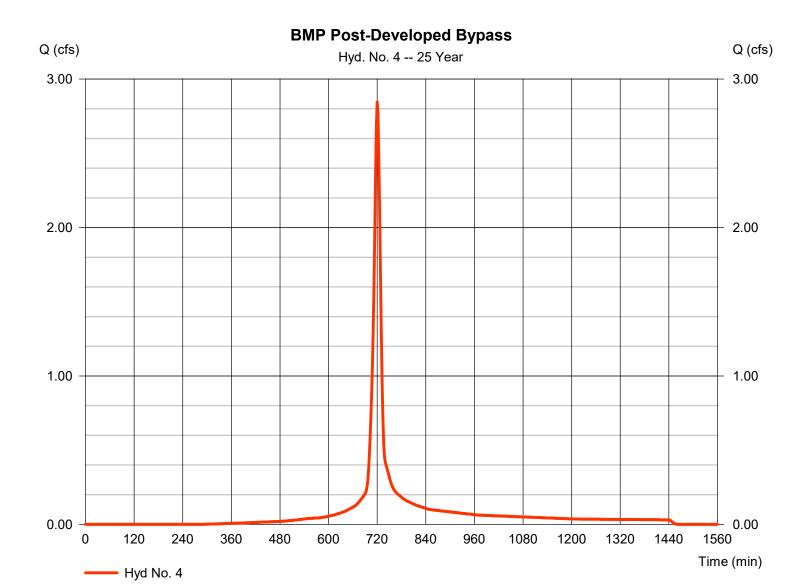

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 3

Post Through Detention

Hydrograph type Peak discharge = 2.562 cfs= Reservoir Storm frequency = 25 yrsTime to peak = 740 min Time interval = 2 min Hyd. volume = 46.287 cuft Inflow hyd. No. Max. Elevation = 2 - BMP Post-Developed = 332.74 ft= BMP Pond Reservoir name Max. Storage = 28,306 cuft

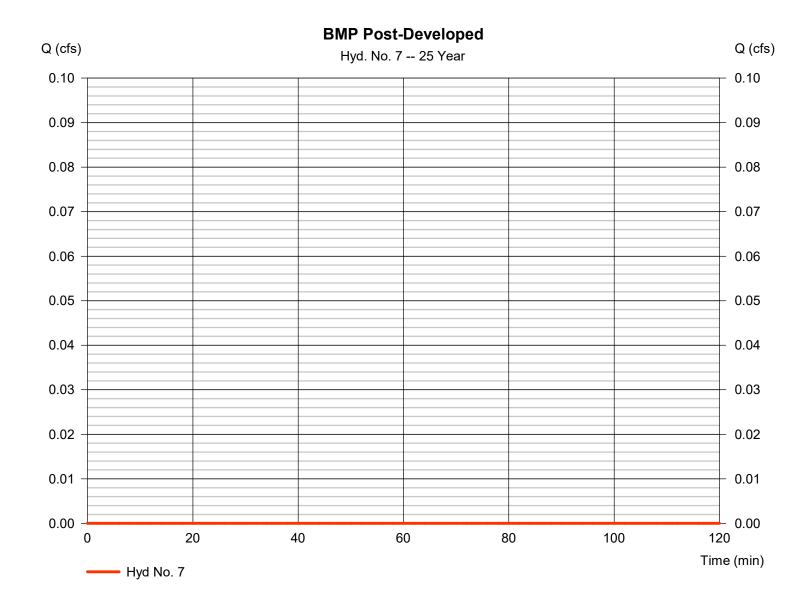

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type = SCS Runoff Peak discharge = 2.845 cfsStorm frequency = 25 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 7,566 cuftCurve number Drainage area = 0.450 ac= 85 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 6.20 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

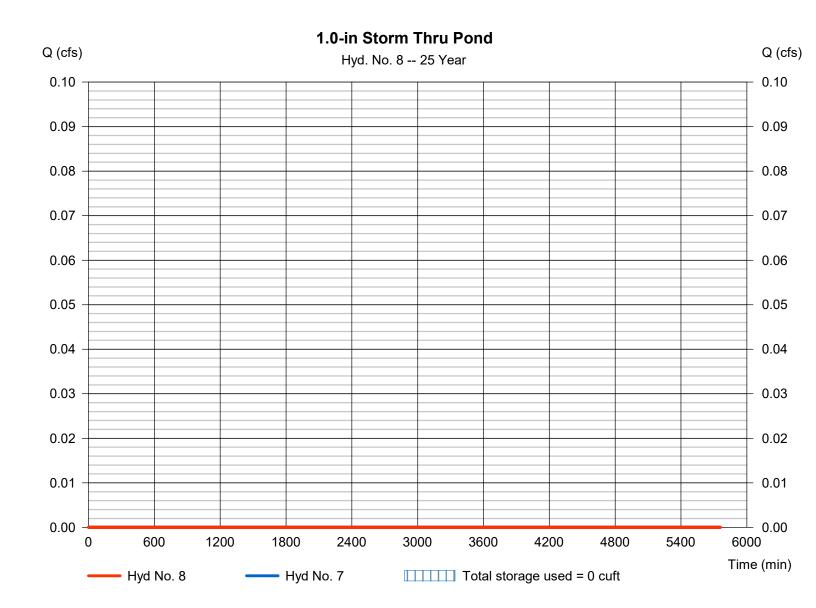

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 7

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 0.000 cfsStorm frequency = 25 yrs Time to peak = n/aTime interval = 2 min Hyd. volume = 0 cuft Drainage area Curve number = 3.420 ac= 84 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 0.00 inDistribution = SCS 6-Hr Storm duration = 6.00 hrsShape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 8

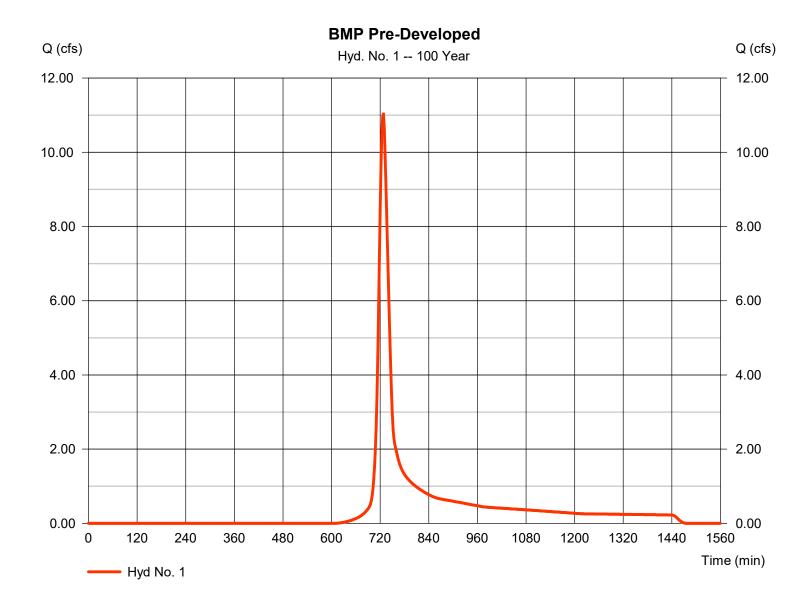
1.0-in Storm Thru Pond

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 25 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. = 7 - BMP Post-Developed Max. Elevation = 329.70 ft= BMP Pond Reservoir name Max. Storage = 0 cuft

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	11.04	2	728	39,210				BMP Pre-Developed
2	SCS Runoff	33.24	2	716	70,941				BMP Post-Developed
3	Reservoir	17.25	2	722	66,153	2	333.22	34,060	Post Through Detention
4	SCS Runoff	3.872	2	720	10,466				BMP Post-Developed Bypass
7	SCS Runoff	0.000	2	n/a	0				BMP Post-Developed
8	Reservoir	0.000	2	n/a	0	7	329.70	0.000	1.0-in Storm Thru Pond
Sto	rmwater Wet	land-(7-E	leven).gp	ow.	Return F	Period: 100	Year	Thursday, (09 / 28 / 2023

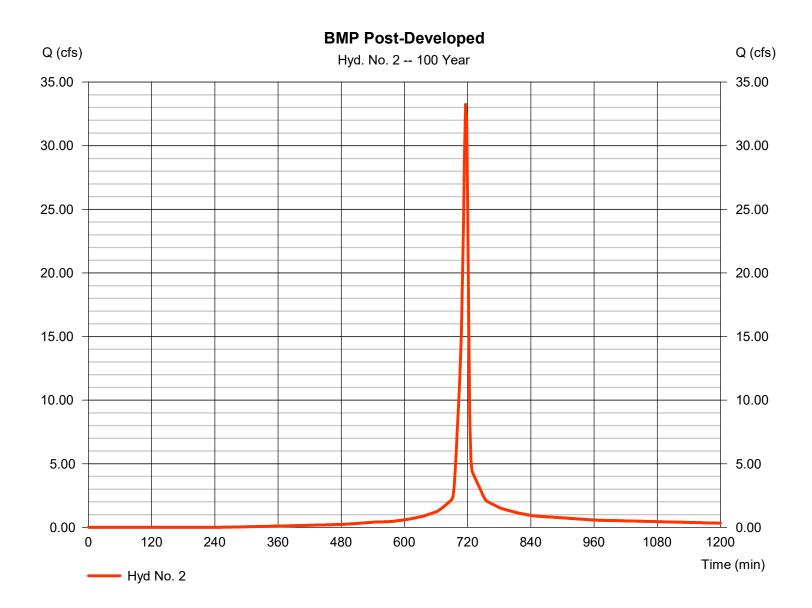

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Thursday, 09 / 28 / 2023

Hyd. No. 1

BMP Pre-Developed

Hydrograph type = SCS Runoff Peak discharge = 11.04 cfsStorm frequency = 100 yrsTime to peak = 728 min Time interval = 2 min Hyd. volume = 39.210 cuft Drainage area Curve number = 3.410 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 21.00 min = User Total precip. = 8.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

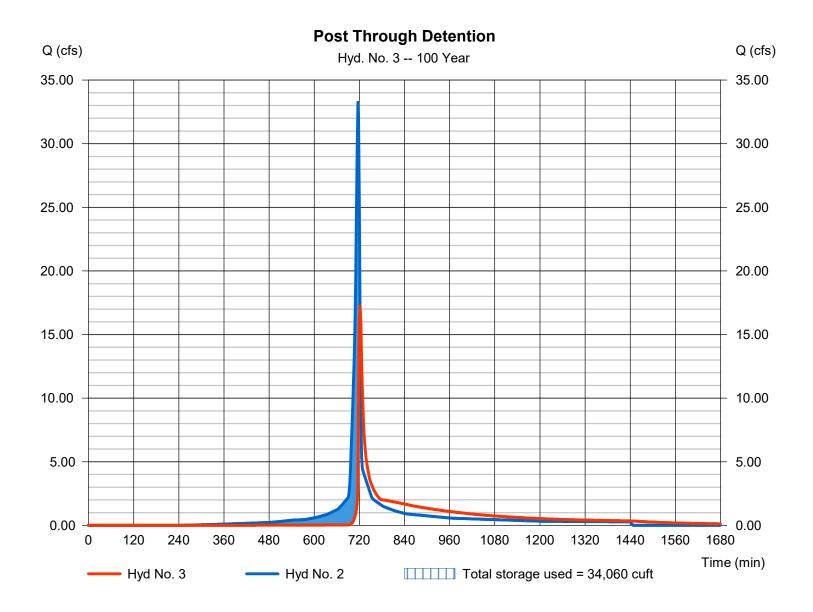
Thursday, 09 / 28 / 2023

Hyd. No. 2

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 33.24 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 70.941 cuft Drainage area Curve number = 3.420 ac= 84 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

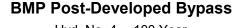

Thursday, 09 / 28 / 2023

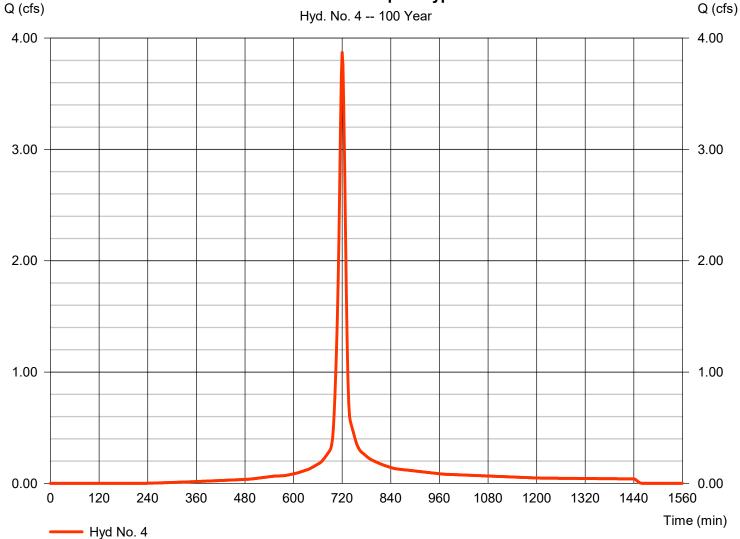
Hyd. No. 3

Post Through Detention

Hydrograph type Peak discharge = 17.25 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 66,153 cuft Inflow hyd. No. Max. Elevation = 333.22 ft= 2 - BMP Post-Developed Reservoir name = BMP Pond Max. Storage = 34,060 cuft

Storage Indication method used.

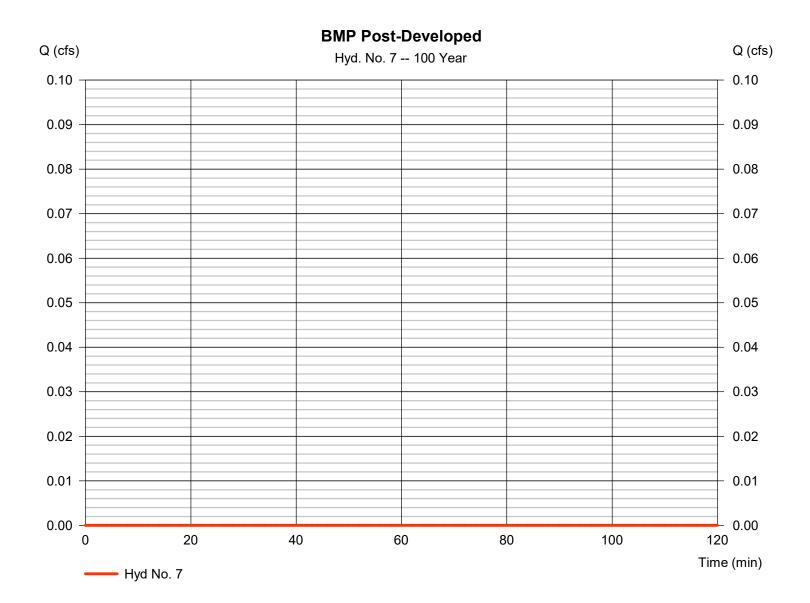

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Thursday, 09 / 28 / 2023

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type = SCS Runoff Peak discharge = 3.872 cfsStorm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 10.466 cuft Drainage area Curve number = 0.450 ac= 85 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 10.00 min = User Total precip. = 8.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

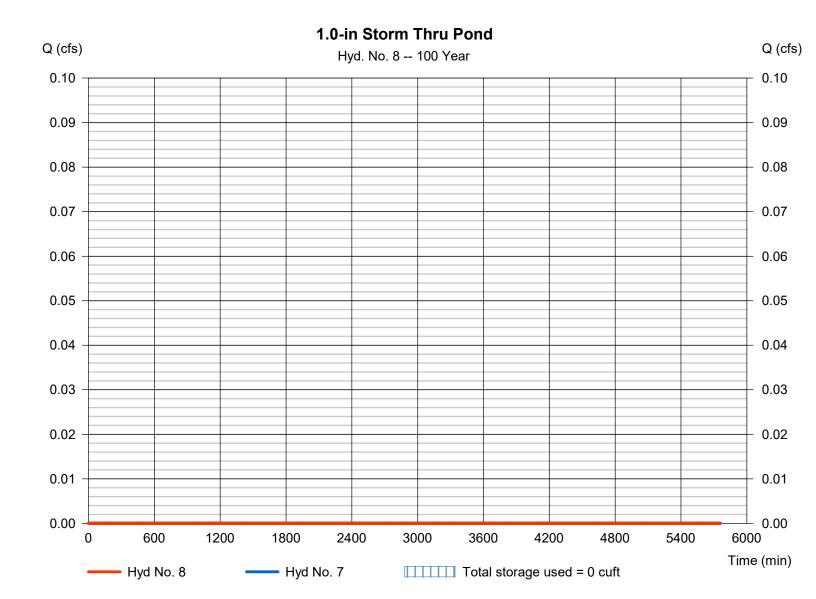
Thursday, 09 / 28 / 2023

Hyd. No. 7

BMP Post-Developed

Hydrograph type = SCS Runoff Peak discharge = 0.000 cfsStorm frequency = 100 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuft Drainage area Curve number = 3.420 ac= 84 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 5.00 \, \text{min}$ Total precip. Distribution = SCS 6-Hr = 0.00 inStorm duration = 6.00 hrsShape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Thursday, 09 / 28 / 2023

Hyd. No. 8

1.0-in Storm Thru Pond

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 100 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. Max. Elevation = 7 - BMP Post-Developed = 329.70 ft= BMP Pond Reservoir name Max. Storage = 0 cuft

Storage Indication method used.

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): NC NC20230929124651864000 35.83772, -78.31992 2023-09-29 08:47:19 -0400

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.062	square miles
LC06IMP	Percentage of impervious area determined from NLCD 2006 impervious dataset	24.34	percent
PCTREG1	Percentage of drainage area located in Region 1 - Piedmont / Ridge and Valley	100	percent
PCTREG2	Percentage of drainage area located in Region 2 - Blue Ridge	0	percent
PCTREG3	Percentage of drainage area located in Region 3 - Sandhills	0	percent
PCTREG4	Percentage of drainage area located in Region 4 - Coastal Plains	0	percent
PCTREG5	Percentage of drainage area located in Region 5 - Lower Tifton Uplands	0	percent

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.062	square miles	0.1	1
LC06IMP	Percent Impervious NLCD2006	24.34	percent	0	47.9

Peak-Flow Statistics Parameters [Peak Southeast US NC 2023 5006]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
PCTREG1	Percent Area in Region 1	100	percent	0	100
PCTREG2	Percent Area in Region 2	0	percent	0	100
PCTREG3	Percent Area in Region 3	0	percent	0	100
PCTREG5	Percent Area in Region 5	0	percent	0	100
DRNAREA	Drainage Area	0.062	square miles	0.08	8902
PCTREG4	Percent Area in Region 4	0	percent	0	100

Peak-Flow Statistics Disclaimers [Region 1 Piedmont rural under 1 sqmi 2014 5030]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Statistic	Value	Unit
50-percent AEP flood	47.8	ft^3/s
20-percent AEP flood	63	ft^3/s
10-percent AEP flood	71.8	ft^3/s
4-percent AEP flood	80.8	ft^3/s
2-percent AEP flood	86.4	ft^3/s
1-percent AEP flood	92.2	ft^3/s
0.5-percent AEP flood	96.7	ft^3/s
0.2-percent AEP flood	108	ft^3/s

Peak-Flow Statistics Disclaimers [Peak Southeast US NC 2023 5006]

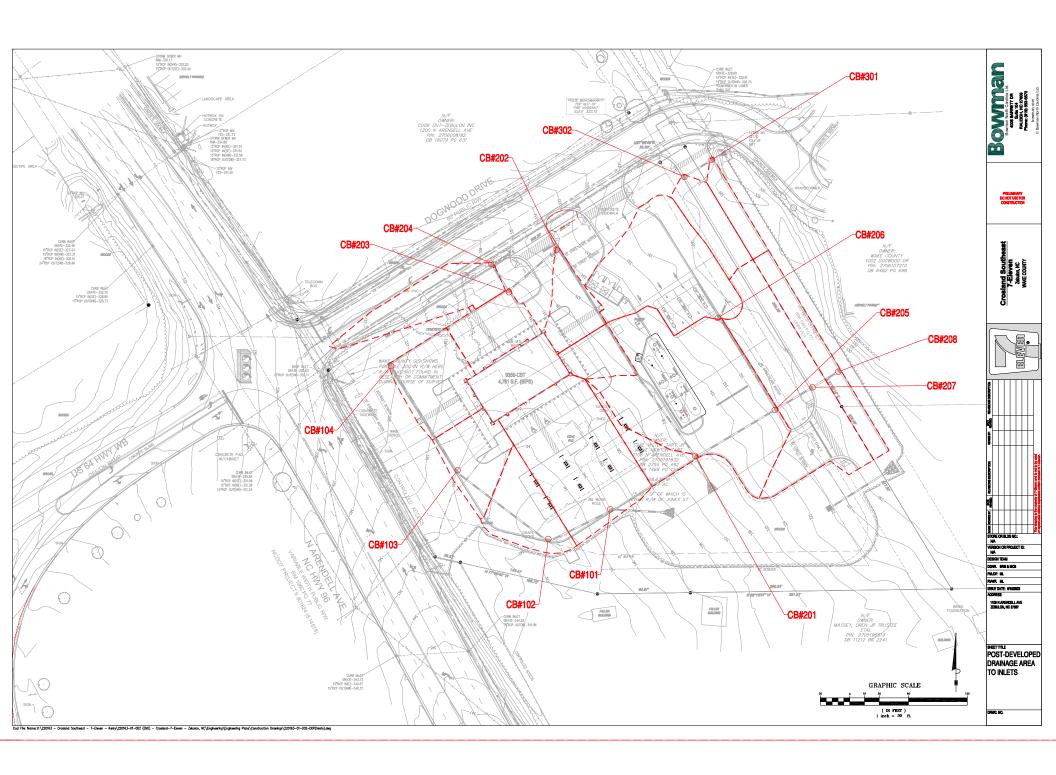
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report [Peak Southeast US NC 2023 5006]

Statistic	Value	Unit
50-percent AEP flood	24.8	ft^3/s
20-percent AEP flood	46.1	ft^3/s
10-percent AEP flood	63.9	ft^3/s
4-percent AEP flood	88.8	ft^3/s
2-percent AEP flood	111	ft^3/s
1-percent AEP flood	134	ft^3/s
0.5-percent AEP flood	158	ft^3/s
0.2-percent AEP flood	189	ft^3/s

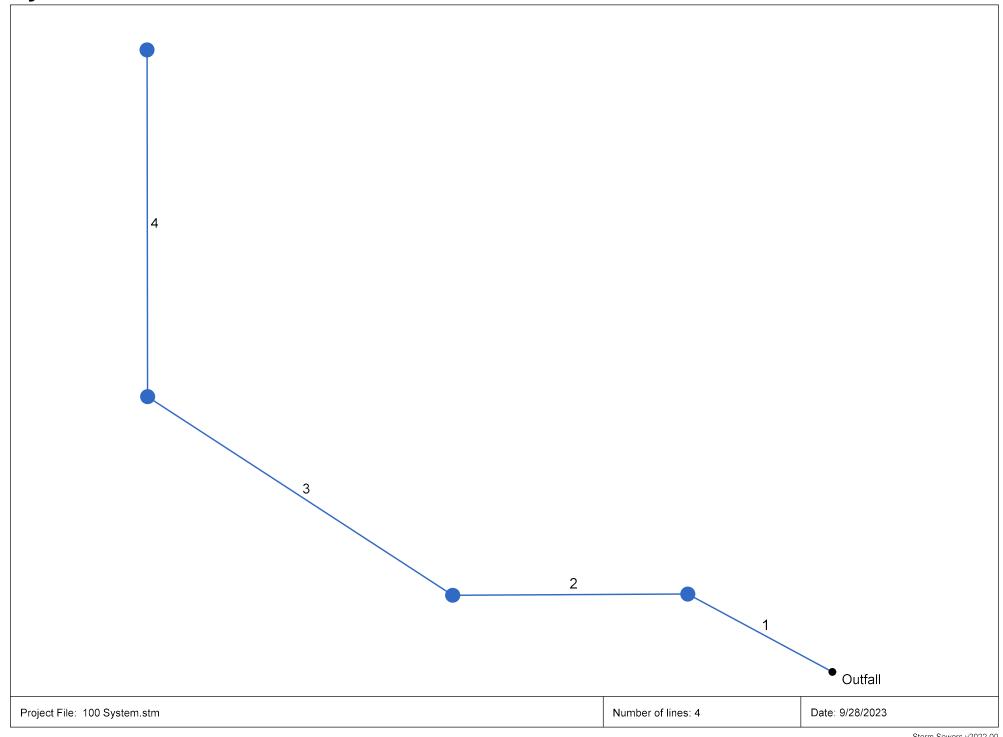
Peak-Flow Statistics Citations

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p.


Feaster, T.D., Gotvald, A.J., Musser, J.W., Weaver, J.C, Kolb, K.R., Veilleux, A.G., and Wagner, D.M.2023, Magnitude and frequency of floods for rural streams in Georgia, South Carolina, and North Carolina, 2017—Results: U.S. Geological Survey Scientific Investigations Report 2023-5006, 75 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.


USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.17.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Rational Runof	f Coefficien	t "C"		
Catch Basin#101				
<u>Drainage Area (acres):</u> 0.33				
Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.31 0.02 0.00 0.33	% Site 0% 95% 5% 0% Cumulative "C" = i10= Q10=	Runoff "C" 0.95 0.95 0.3 0.2	"C" 0.00 0.90 0.02 0.00 0.91 7.21 2.16
Catch Basin#102				
Drainage Area (acres): 0.12				
Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.10 0.02 0.00 0.12	% Site 0% 83% 17% 0% Cumulative "C" = i10= Q10=	Runoff "C" 0.95 0.95 0.3 0.2	"C" 0.00 0.79 0.05 0.00 0.84 7.21 0.75
Catch Basin#103				
Drainage Area (acres): Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.09 0.02 0.00	% Site 0% 79% 21% 0% Cumulative "C" = i10=	Runoff "C" 0.95 0.95 0.3 0.2	"C" 0.00 0.75 0.06 0.00 0.81 7.21
		Q10=		0.67
Catch Basin#104				
<u>Drainage Area (acres):</u> 0.14				
Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.13 0.02 0.00 0.14	% Site 0% 89% 11% 0% Cumulative "C" = i10= Q10=	Runoff "C" 0.95 0.95 0.95 0.3 0.2	"C" 0.00 0.84 0.03 0.00 0.88 7.21 0.91

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line		Aligni	ment			Flow	Data					Physica	l Data				Line ID
No.	Dnstr Line No.	Length		Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	51.000	-146.31	Curb	2.16	0.00	0.00	0.0	329.70	0.59	330.00	15	Cir	0.012	0.92	336.60	
2	1	69.000	-34.053	Curb	0.75	0.00	0.00	0.0	330.00	0.58	330.40	15	Cir	0.012	1.02	337.00	
3	2	115.000	39.225	Curb	0.67	0.00	0.00	0.0	330.40	0.52	331.00	15	Cir	0.012	1.22	337.40	
4	3	126.000	51.059	Curb	0.91	0.00	0.00	0.0	331.00	0.56	331.70	15	Cir	0.012	1.00	336.70	
 Proiec	t File: 100	System.stm	<u> </u> 							1		Number	of lines: 4			Date: 9	 28/2023

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Curb-	336.60	Cir	4.00	4.00	15	Cir	330.00	15	Cir	330.00
2		Curb-	337.00	Cir	4.00	4.00	15	Cir	330.40	15	Cir	330.40
3		Curb-	337.40	Cir	4.00	4.00	15	Cir	331.00	15	Cir	331.00
4		Curb-	336.70	Cir	4.00	4.00	15	Cir	331.70			
Project F	File: 100 System.stm		-				N	lumber of Struc	tures: 4	Run	Date: 9/28/202	23

Storm Sewer Summary Report

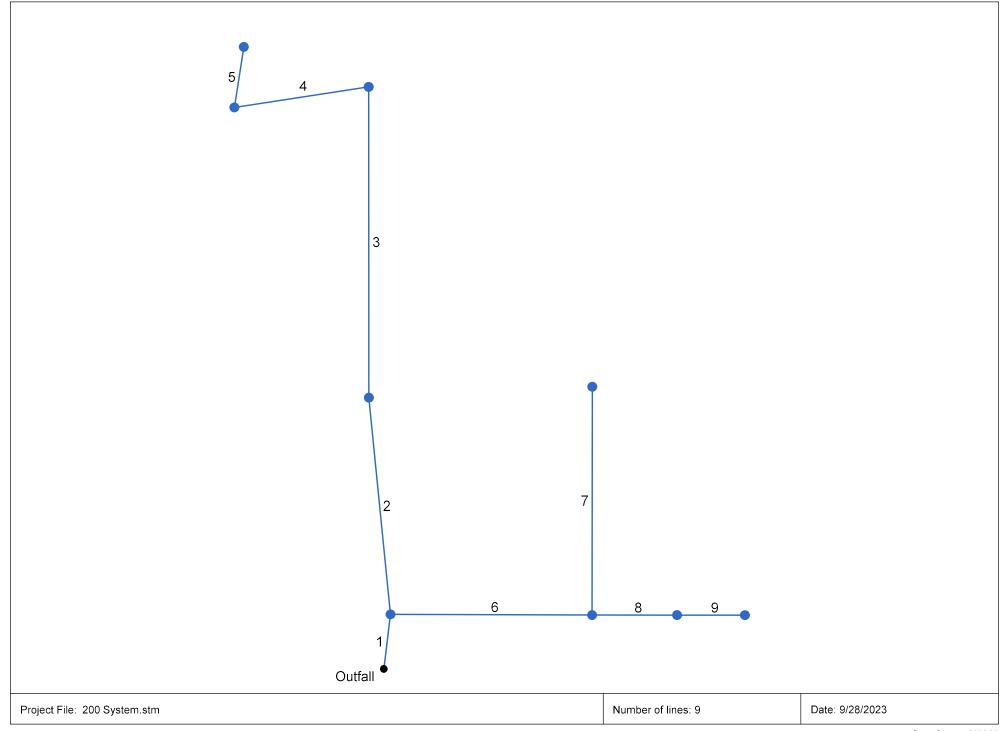
ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		4.49	15	Cir	51.000	329.70	330.00	0.588	330.57	330.88	0.34	331.22	End	Curb-
2		2.33	15	Cir	69.000	330.00	330.40	0.580	331.22	331.01	n/a	331.01	1	Curb-
3		1.58	15	Cir	115.000	330.40	331.00	0.522	331.01	331.50	n/a	331.50 j	2	Curb-
4		0.91	15	Cir	126.000	331.00	331.70	0.556	331.50	332.07	n/a	332.07 j	3	Curb-
Project F	File: 100 System.stm	I		1	1	1	1	1	Number o	of lines: 4	1	Run	 Date: 9/28/	′2023

NOTES: Return period = 10 Yrs. ; j - Line contains hyd. jump.

Hydraulic Grade Line Computations

_ine	Size	Q			D	ownstre	am				Len				Upsti	ream				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Sf	Enrgy loss (ft)	coeff (K)	loss (ft)
	(111)	(015)	(11)	(11)	(11)	(SQIL)	(105)	(11)	(11)	(/0)	(11)	(11)	(11)	(11)	(Sqit)	(105)	(11)	(11)	(/0)	(/0)	(11)	(14)	+
1	15	4.49	329.70	330.57	0.87	0.92	4.89	0.37	330.95	0.588	51.000	330.00	330.88	0.88	0.92	4.89	0.37	331.25	0.587	0.588	0.300	0.92	0.34
2	15	2.33	330.00	331.22	1.22		1.91	0.24	331.46	0.000		330.40		0.61**		3.92	0.24	331.25		0.000		1.02	n/a
3	15	1.58	330.40	331.01		0.46	2.66	0.19	331.20	0.000		0331.00	331.50 j			3.47	0.19	331.68	0.000		n/a	1.22	0.23
4	15	0.91	331.00	331.50	0.50		2.00	0.14	331.63			0331.70	332.07 j			2.95	0.14	332.21		0.000		1.00	0.14
•		0.01	001.00	001.00	0.00	0.01	2.00	0.11	001.00	0.000	120.00	0001170	002.07]	0.07	0.01	2.00	0.11	002.21	0.000	0.000	""	1.00	0.11
																			<u> </u>				\perp

Project File: 100 System.stm Run Date: 9/28/2023


Notes: ; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

Rational F	Runoff Coefficien	t "C"		
Catch Basin#201				
<u>Drainage Area (acres):</u> 0.05				
Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.05 0.00 0.00 0.00	% Site 0% 98% 2% 0% Cumulative "C" = i10= Q10=	Runoff "C" 0.95 0.95 0.95 0.3 0.2	"C" 0.00 0.93 0.01 0.00 0.94 7.21 0.37
Catch Basin#202				0.07
Drainage Area (acres): 0.06				
Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.06 0.00 0.00 0.00	<u>% Site</u> 0% 94% 6% 0% Cumulative "C" = i10= Q10=	Runoff "C" 0.95 0.95 0.3 0.2	"C" 0.00 0.89 0.02 0.00 0.91 7.21 0.41
Catch Basin#203				
<u>Drainage Area (acres):</u> 0.08				
Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.07 0.01 0.00 0.08	% Site 0% 88% 12% 0% Cumulative "C" = i10= Q10=	Runoff "C" 0.95 0.95 0.3 0.2	"C" 0.00 0.83 0.04 0.00 0.87 7.21 0.52
Catch Basin#204				
Drainage Area (acres): Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.11 0.10 0.00 0.00 0.21	% Site 53% 45% 2% 0% Cumulative "C" = i10= Q10=	Runoff "C" 0.95 0.95 0.95 0.3 0.2	"C" 0.50 0.43 0.01 0.00 0.94 7.21 1.44
Catch Basin#205				
Drainage Area (acres): 0.14 Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	Acres 0.00 0.11 0.04 0.00 0.14	% Site 0% 75% 25% 0% Cumulative "C" =	Runoff "C" 0.95 0.95 0.3 0.2	"C" 0.00 0.71 0.08 0.00 0.79
		i10= Q10=		7.21 0.80

Catch Basin#206

<u>Acres</u>	% Site		<u>"C"</u>
			0.00
			0.87 0.03
			0.03
		0.2	0.89
0.40			7.21
	Q10=		3.12
Acres	% Site	Runoff "C"	<u>"C"</u>
			0.12
0.16	55%	0.95	0.52
0.10	33%	0.3	0.10
0.00	0%	0.2	0.00
0.30	Cumulative "C" =		0.74
			7.21
	Q10=		1.57
Acres	% Site	Runoff "C"	<u>"C"</u>
			0.00
0.21	67%	0.95	0.64
0.10	33%	0.3	0.10
0.00	0%	0.2	0.00
0.32			0.74
			7.21 1.69
	Q10=		1.09
	% Site	D (("O"	"0"
<u>Acres</u>		Runoff "C"	<u>"C"</u>
0.00	0%	0.95	0.00
0.00 0.10	0% 100%	0.95 0.95	0.00 0.95
0.00 0.10 0.00	0% 100% 0%	0.95 0.95 0.3	0.00 0.95 0.00
0.00 0.10 0.00 0.00	0% 100% 0% 0%	0.95 0.95	0.00 0.95 0.00 0.00
0.00 0.10 0.00	0% 100% 0%	0.95 0.95 0.3	0.00 0.95 0.00
	0.00 0.44 0.04 0.00 0.48 0.04 0.16 0.10 0.00 0.30 0.30	O.00	O.00

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line		Aligni	ment			Flow	/ Data					Physica	l Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	26.000	-83.058	Curb	0.37	0.00	0.00	0.0	329.70	0.77	329.90	24	Cir	0.012	1.49	336.30	
2	1	103.000	-12.618	Curb	0.41	0.00	0.00	0.0	329.90	0.58	330.50	18	Cir	0.012	0.50	335.00	
3	2	147.000	5.644	Curb	0.52	0.00	0.00	0.0	330.50	0.54	331.30	18	Cir	0.012	1.50	334.50	
4	3	64.000	-98.707	Curb	1.44	0.00	0.00	0.0	331.30	0.63	331.70	18	Cir	0.012	1.50	336.50	
5	4	29.000	107.518	Curb	0.80	0.00	0.00	0.0	331.70	0.69	331.90	15	Cir	0.012	1.00	335.70	
6	1	95.000	83.248	Comb	3.12	0.00	0.00	0.0	329.90	0.53	330.40	24	Cir	0.012	1.50	333.90	
7	6	108.000	-90.139	Curb	1.57	0.00	0.00	0.0	330.40	0.56	331.00	18	Cir	0.012	1.00	335.00	
8	6	40.000	-0.129	Curb	1.69	0.00	0.00	0.0	330.40	0.50	330.60	15	Cir	0.012	0.50	333.38	
9	8	32.000	-0.024	Curb	0.69	0.00	0.00	0.0	330.60	0.62	330.80	15	Cir	0.012	1.00	333.38	
Proiec	t File: 200	System.stm	1									Number	of lines: 9			Date: 9/	l

Structure Report

Struct	Structure ID	<u>J</u> unction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Curb-	336.30	Cir	4.00	4.00	24	Cir	329.90	18 24	Cir Cir	329.90 329.90
2		Curb-	335.00	Cir	4.00	4.00	18	Cir	330.50	18	Cir	330.50
3		Curb-	334.50	Cir	4.00	4.00	18	Cir	331.30	18	Cir	331.30
4		Curb-	336.50	Cir	4.00	4.00	18	Cir	331.70	15	Cir	331.70
5		Curb-	335.70	Cir	4.00	4.00	15	Cir	331.90			
6		Combination	333.90	Cir	4.00	4.00	24	Cir	330.40	18 15	Cir Cir	330.40 330.40
7		Curb-	335.00	Cir	4.00	4.00	18	Cir	331.00			
8		Curb-	333.38	Cir	4.00	4.00	15	Cir	330.60	15	Cir	330.60
	File: 200 System.stm							umber of Struct			Date: 9/28/202	

Storm Sewer Summary Report

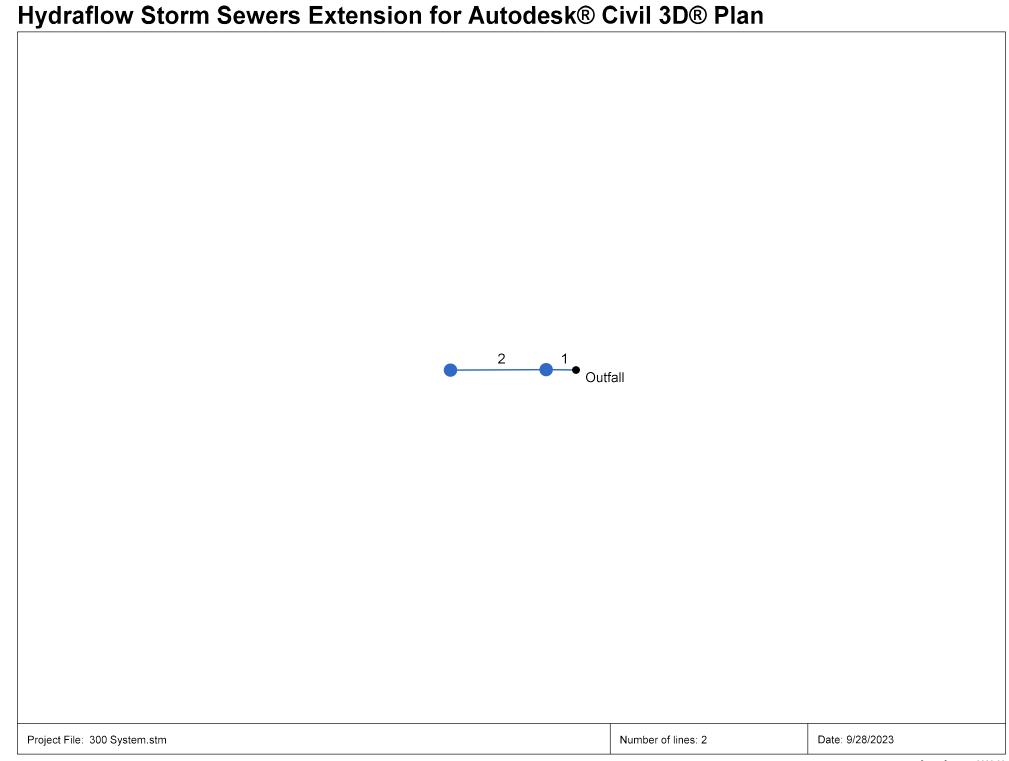
	rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	10.61	24	Cir	26.000	329.70	329.90	0.769	330.69	331.07	n/a	331.07	End	Curb-
2	3.17	18	Cir	103.000	329.90	330.50	0.583	331.07	331.18	n/a	331.18 j	1	Curb-
3	2.76	18	Cir	147.000	330.50	331.30	0.544	331.18	331.93	n/a	331.93 j	2	Curb-
4	2.24	18	Cir	64.000	331.30	331.70	0.625	331.93	332.27	n/a	332.27 ј	3	Curb-
5	0.80	15	Cir	29.000	331.70	331.90	0.690	332.27	332.25	n/a	332.25 j	4	Curb-
6	7.07	24	Cir	95.000	329.90	330.40	0.526	331.07	331.34	n/a	331.34 j	1	Combination
7	1.57	18	Cir	108.000	330.40	331.00	0.560	331.34	331.47	n/a	331.47 j	6	Curb-
8	2.38	15	Cir	40.000	330.40	330.60	0.500	331.34	331.22	n/a	331.22	6	Curb-
9	0.69	15	Cir	32.000	330.60	330.80	0.625	331.22	331.12	n/a	331.12	8	Curb-

Project File: 200 System.stm Number of lines: 9 Run Date: 9/28/2023

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upstr	eam			Cho		k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	VeI (ft/s)		EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	VeI head (ft)	elev	Sf (%)	Sf	Enrgy loss (ft)	coeff (K)	loss (ft)
	,	(010)	(10)	(10)	(10)	(Sqrt)	(103)	(1.1)	(1.5)	(70)	(10)	(10)	(10)	(10)	(Sqrt)	(100)	(10)	(10)	(70)	(70)	(10)	 	 (10)
1	24	10.61	329.70	330.69	0.99	1.56	6.82	0.48	331.18	0.000	26.000	329.90	331.07	1.17**	1.90	5.58	0.48	331.55	0.000	0.000	n/a	1.49	n/a
2	18	3.17	329.90	331.07	1.17	0.77	2.15	0.26	331.33	0.000	103.00	0330.50	331.18 j	0.68**	0.77	4.09	0.26	331.44	0.000	0.000	n/a	0.50	n/a
3	18	2.76	330.50	331.18	0.68	0.70	3.56	0.24	331.42	0.000	147.00	0331.30	331.93 j	0.63**	0.70	3.92	0.24	332.17	0.000	0.000	n/a	1.50	n/a
4	18	2.24	331.30	331.93	0.63	0.61	3.18	0.21	332.14	0.000	64.000	331.70	332.27 j	0.56**	0.61	3.68	0.21	332.48	0.000	0.000	n/a	1.50	n/a
5	15	0.80	331.70	332.27	0.56	0.28	1.49	0.13	332.39	0.000	29.000	331.90	332.25 j	0.35**	0.28	2.85	0.13	332.38	0.000	0.000	n/a	1.00	n/a
6	24	7.07	329.90	331.07	1.17	1.46	3.72	0.37	331.43	0.000	95.000	330.40	331.34 j	0.94**	1.46	4.85	0.37	331.71	0.000	0.000	n/a	1.50	0.55
7	18	1.57	330.40	331.34	0.94	0.47	1.34	0.17	331.51	0.000	108.00	0331.00	331.47 j	0.47**	0.47	3.31	0.17	331.65	0.000	0.000	n/a	1.00	0.17
8	15	2.38	330.40	331.34	0.94	0.60	2.40	0.24	331.58	0.000	40.000	330.60	331.22	0.62**	0.60	3.95	0.24	331.46	0.000	0.000	n/a	0.50	n/a
9	15	0.69	330.60	331.22	0.62	0.25	1.14	0.12	331.33	0.000	32.000	330.80	331.12	0.32**	0.25	2.73	0.12	331.24	0.000	0.000	n/a	1.00	n/a


Notes:; ** Critical depth.; j-Line contains hyd. jump; c = cir e = ellip b = box

Project File: 200 System.stm

Run Date: 9/28/2023

Number of lines: 9

Rational Rur	noff Coefficient	t "C"		
Catch Basin#301				
Catch basin#301				
<u>Drainage Area (acres):</u> 0.05				
Proposed Land Uses:				
<u>Land Use Description</u>	<u>Acres</u>	% Site	Runoff "C"	<u>"C"</u>
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.05	100%	0.95	0.95
Lawn	0.00	0%	0.3	0.00
Wooded	0.00	0%	0.2	0.00
Total Area=	0.05	Cumulative "C" =		0.95
		i10=		7.21
		Q10=		0.31
<u> </u>				
Catch Basin#302				
Drainage Area (acres): 0.09				
Proposed Land Uses:				
<u>Land Use Description</u>	<u>Acres</u>	% Site	Runoff "C"	<u>"C"</u> 0.00
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.06	71%	0.95	0.67
Lawn	0.02	29%	0.3	0.09
Wooded	0.00	0%	0.2	0.00
Total Area=	0.09	Cumulative "C" =		0.76
		i10=		7.21
		Q10=		0.47

Storm Sewer Inventory Report

_ine		Align	ment			Flow	Data					Physica	l Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	10.000	-179.32	6 Curb	0.31	0.00	0.00	0.0	327.50	1.00	327.60	15	Cir	0.012	0.50	330.80	
2	1	32.000	-0.954	Curb	0.47	0.00	0.00	0.0	327.60	0.62	327.80	15	Cir	0.012	1.00	330.70	
	1 File 200	System.stm	-									NI.	of lines: 2			D	/28/2023

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Curb-	330.80	Cir	4.00	4.00	15	Cir	327.60	15	Cir	327.60
2		Curb-	330.70	Cir	4.00	4.00	15	Cir	327.80			
Project I	l File: 300 System.stm						N	umber of Struct	tures: 2	Run	l Date: 9/28/202	3

Storm Sewer Summary Report

1 2	0.78			(ft)	EL Dn (ft)	EL Up (ft)	Slope (%)	Down (ft)	Up (ft)	loss (ft)	Junct (ft)	Line No.	Туре
2		15	Cir	10.000	327.50	327.60	1.000	327.78	327.95	0.06	327.95	End	Curb-
	0.47	15 15	Cir	10.000	327.50 327.60	327.60 327.80	1.000	327.78 327.95	327.95 328.07		327.95 328.07 j	End 1	Curb-

NOTES: Return period = 10 Yrs. ; j - Line contains hyd. jump.

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upsti	eam				Chec	k	JL	Minor
		(5)	Invert elev	HGL elev	Depth		Vel	Vel head	EGL elev	Sf		Invert elev	HGL elev	Depth		Vel	Vel head	EGL elev		Sf	Enrgy loss	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
1	15	0.78	327.50	327.78	0.28	0.21	3.76	0.12	327.91	0.000	10.000	327.60	327.95	0.35**	0.28	2.82	0.12	328.07	0.000	0.000	n/a	0.50	0.06
2	15	0.47	327.60	327.95	0.35		1.70	0.09	328.04	0.000		327.80	328.07 j			2.45	0.09	328.16	0.000			1.00	0.09
۷	13	0.47	327.00	327.33	0.55	0.13	1.70	0.03	320.04	0.000	32.000	327.00	320.07]	0.27	0.13	2.45	0.03	320.10	0.000	0.000	II/a	1.00	0.03

Project File: 300 System.stm Number of lines: 2 Run Date: 9/28/2023

Notes: ; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box