Piedmont Land Design, PLLC 8522-204 Six Forks Road • Raleigh, NC 27615 • (919) 845-7600 • Fax: (919) 845-7703

Sewer Capacity Analysis for Weaver's Pointe Subdivision

Zebulon, North Carolina

Issued:

April 26, 2024

DID Piedmont Land Design, PLLC

J 8522-204 Six Forks Road • Raleigh, NC 27615 • (919) 845-7600 • Fax: (919) 845-7703

Narrative

The Weaver's Pointe project is a proposed 87 lot subdivision located at the existing road stubs of Weavers Pond Drive and Yulee Drive.

Limits of study

Per the City of Raleigh, the study consists of the analysis of the existing sewer outfall, starting at the existing manhole located at the end of Sage Tree Drive, and ending at the existing MH located approximately 300' south of Pearces Road. Refer to the "Basin Study Map" in this report.

Flow Data:

Existing Flows

The existing flow data to be included in the analysis was provided by the City of Raleigh. Please see Appendix A for the flow map provided by the City of Raleigh for the flow quantities and locations.

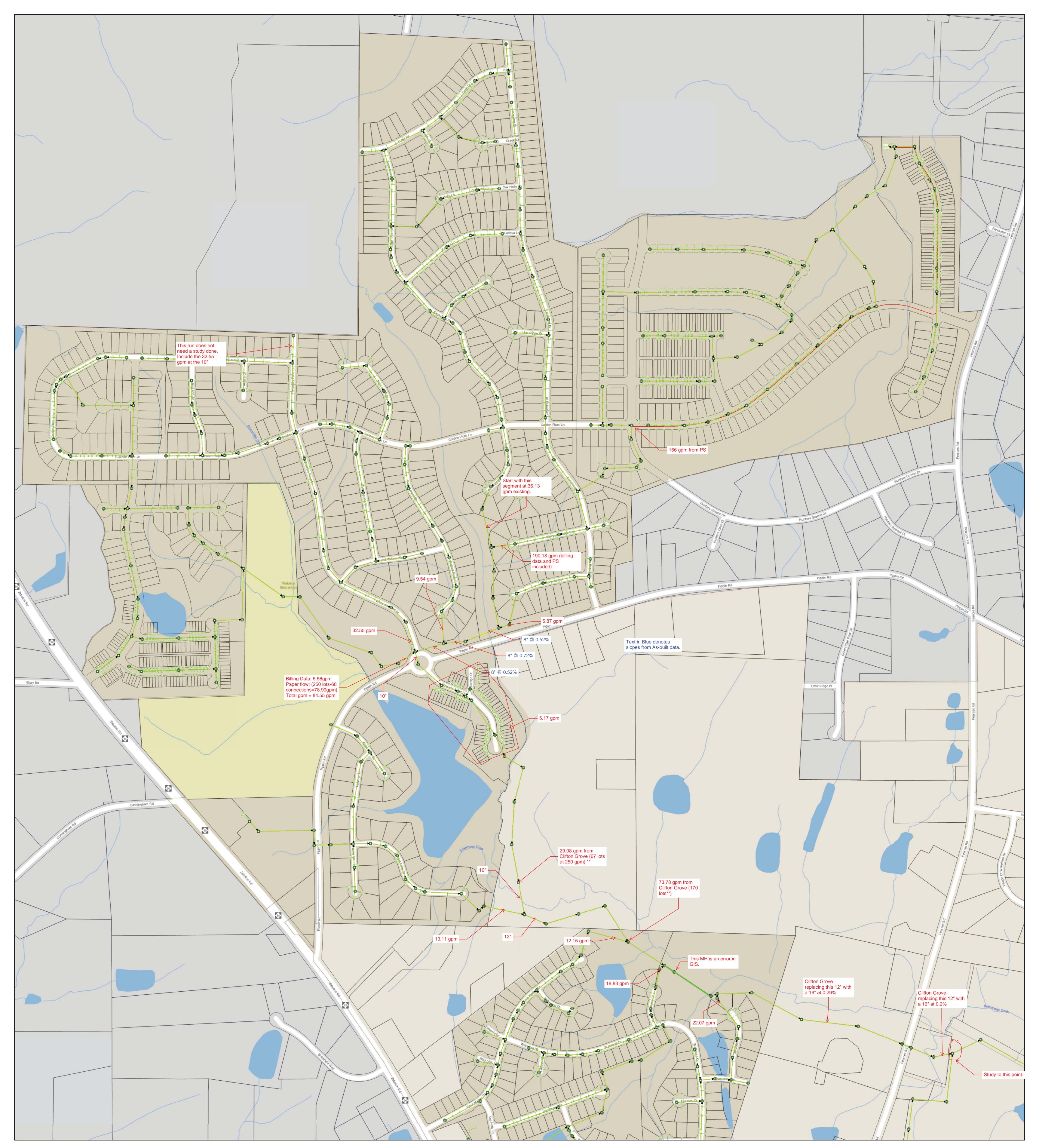
Proposed New Flows:

The proposed flows generated by the new project are as follows:

Daily flow = 348 br x 75 gpd/br = 26,100 gpdMax Peak flow = 26,100 gpd x 2.5 = 62,250 gpd = 43.3 gpm

Per the City, this flow will be applied at MH-26 (see Basin Study Map).

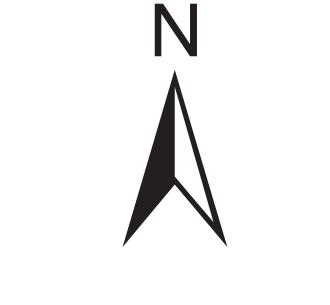
Executive Summary:


Pipes that are over 66% must be replaced.

The study found that all pipes are under 66% capacity, and therefore no pipe replacements are required. See Appendix C for the flow and capacity calculations, which include the capacity of all pipes within the study limits.

Appendix A

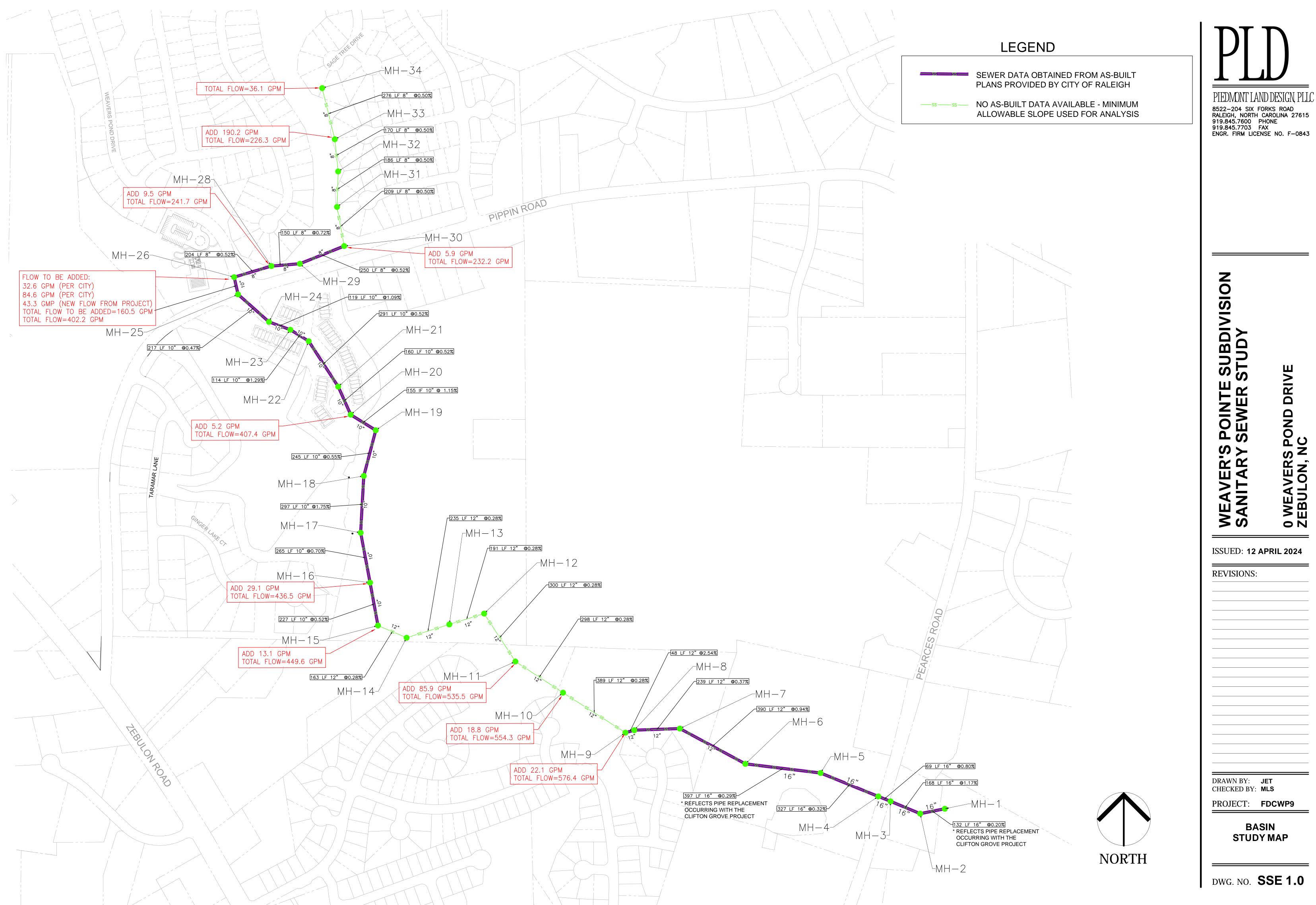
Flow Map Provided By the City



TITLE

** Clifton Grove Sanitary Sewer Study done prior to SB 673 being passed. Calculated 250 gpm per lot for SFD.

Existing flows based on 2023 billing data.


400 100 200 600 0 1 1 1 1 1 inch equals 200 feet

Disclaimer iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied, are provided for the data therein, its use,or its interpretation.

Appendix B

Basin Study Map

DRIVE

ERS POND N, NC

0 WEAVE ZEBULOI

Appendix C

Calculations

Upstream MH	Downstream MH	PIPE SEGMENT	MATERIAL	LENGTH (FT)	EX. DIA. (INCHES)	SLOPE (%)	MANNING (N)	CAPACITY OF EX. PIPE FULL FLOW (GPM)	TOTAL FLOW IN PIPE (GPM)	% FULL EXISTING PIPE
34	33	33	DIP	276	8	0.500	0.013	384.5	36.1	9.4%
33	32	32	DIP	170	8	0.500	0.013	384.5	226.3	58.9%
32	31	31	DIP	186	8	0.500	0.013	384.5	226.3	58.9%
31	30	30	DIP	209	8	0.500	0.013	384.5	226.3	58.9%
30	29	29	DIP	250	8	0.520	0.013	392.1	232.2	59.2%
29	28	28	DIP	150	8	0.720	0.013	461.4	232.2	50.3%
28	26	27	DIP	204	8	0.520	0.013	392.1	241.7	61.6%
26	25	25	DIP	92	10	0.690	0.013	818.9	402.2	49.1%
25	24	24	DIP	217	10	0.470	0.013	675.9	402.2	59.5%
24	23	23	PVC	119	10	1.090	0.013	1029.3	402.2	39.1%
23	22	22	PVC	114	10	1.290	0.013	1119.7	402.2	35.9%
22	21	21	PVC	283	10	0.520	0.013	710.9	402.2	56.6%
21	20	20	PVC	161	10	0.520	0.013	710.9	402.2	56.6%
20	19	19	DIP	154	10	1.150	0.013	1057.2	407.4	38.5%
19	18	18	DIP	247	10	0.560	0.013	737.8	407.4	55.2%
18	17	17	PVC	298	10	1.750	0.013	1304.2	407.4	31.2%
17	16	16	DIP	266	10	0.700	0.013	824.8	407.4	49.4%
16	15	15	DIP	229	10	0.520	0.013	710.9	436.5	61.4%
15	14	14	DIP	163	12	0.280	0.013	848.3	449.6	53.0%
14	13	13	DIP	235	12	0.280	0.013	848.3	449.6	53.0%
13	12	12	DIP	191	12	0.280	0.013	848.3	449.6	53.0%
12	11	11	DIP	300	12	0.280	0.013	848.3	449.6	53.0%
11	10	10	DIP	298	12	0.280	0.013	848.3	535.5	63.1%
10	9	9	PVC	389	12	0.280	0.013	848.3	554.3	65.3%
9	8	8	DIP	48	12	2.540	0.013	2555.0	576.4	22.6%
8	7	7	DIP	239	12	0.370	0.013	975.1	576.4	59.1%
7	6	6	DIP	390	12	0.940	0.013	1554.3	576.4	37.1%
6	5	5	DIP	397	16	0.290	0.013	1859.3	576.4	31.0%
5	4	4	DIP	327	16	0.320	0.013	1953.1	576.4	29.5%
4	3	3	DIP	69	16	0.800	0.013	3088.1	576.4	18.7%
3	2	2	DIP	168	16	1.170	0.013	3734.5	576.4	15.4%
2	1	1	DIP	132	16	0.200	0.013	1544.0	576.4	37.3%

Note: Pipe Full Flows Calculated using the below formula.

Determination of adequacy of line size:

$$Q = \frac{\sqrt{s}}{n} \left(\frac{D}{16}\right)^{8/3}$$

Where

- Q = discharge, in cfs D = Diameter, in inches n = Manning's roughness coefficient s = slope, dimensionless