

7-Eleven Store

1106 N. Arendell Ave

Proposed gas station and associated infrastructure Zebulon, North Carolina

COORDINATES: 35.8336261 N, -78.321664 W Project No.: 220163-01-002

Stormwater and Erosion Control Design Calculations

Prepared By:

4006 Barrett Drive, Suite 104 Raleigh, NC 27609

PREPARED FOR:

C4 CStore Holdings III, LLC Attn. Nick Carroll 801 East Boulevard Charlotte, NC 28202 (502) 693-0396 ncarroll@csere.com

Matt Lowder, PE NC License No. 24434 (919) 553-6570 mlowder@bowman.com

DECEMBER 5, 2023

TABLE OF CONTENTS

Overview Background Floodplains and Streams Soils 	3
 Solls Storm Drainage Design Requirements Peak Runoff Analysis Downstream Impact Analysis Erosion Control 	4 4 6 7
 Appendix A: Figures Aerial Map Soil Report Topography Map FEMA Flood Map HUC Surface Waters Classification NOAA Point Precipitation Frequency Estimates Pre-Development Drainage Map Post-Development Drainage Map Post-Development Bypass Drainage Map 	8
 Appendix B: Stormwater Analysis Wake County Stormwater Design Tool CN Calculation (Bypass) Stormwater Wetland Design and Details Hydrographs (DA#1 & DA#2) Downstream Impact Analysis (DA#1 & DA#2) 	9
 Appendix C: Storm Drainage Design Calculations Post-Development Drainage Map (Inlets) 100 System 200 System 300 System 400 System 500 System Pipe Inlet #1 	10
 Appendix D: Erosion Control Calculations Rip-Rap Apron Skimmer Basin Skimmer sizing Anti-flotation Calculation 	11

• Temporary Diversion Ditches

OVERVIEW

This report contains the stormwater design calculations for the proposed 7-Eleven. The project site is located on the eastern corner of the intersection of N. Arendell Ave and Dogwood Dr. in the town of Zebulon, North Carolina, within Wake County. Currently, the project site is single-family residential and wooded area.

The proposed project site consists of 3.86 acres and approximately 4.30 acres will be disturbed as part of this project for the construction of the site improvements, widening of Dogwood Drive, construction of Jones Street, and the addition of a lane to the US-64 exit ramp. 0.46 acres will be dedicated to right-of-way. The proposed development consists of a 4,761 sf building, two fuel canopies, stormwater control measures, and associated pavement, including parking areas, driveways, and curbs.

Background

The development on the site will result in an impervious area of 78,890 sf (1.81 ac). Table 1 below shows the break-down of the impervious area added to the site.

Impervious Area Summary						
Existing Impervious Area	5,724 sf	0.13 ac				
Proposed On-site Impervious Area	78,890 sf	1.81 ac				
Buildings	4,895 sf	0.11 ac				
Pavement	69,870 sf	1.60 ac				
Sidewalk	4,125 sf	0.09 ac				
Proposed Off-site Impervious Area	25,560 sf	0.59 ac				
Pavement	20,830 sf	0.48 ac				
Sidewalk	4,730 sf	0.11 ac				

Table 1. Impervious Area Summary

Floodplains and Streams

The proposed parcel is not located within a FEMA designated flood zone as shown on the combined FEMA FIRM Panels 3720270500K and 3720270600K (July 19, 2022).

There are no existing streams and/or tributaries on the proposed property.

Soils

Based on the NRCS Web Soil Survey, the project site consists of Wedowee sandy loam (WeB) soils.

WeB soils are Group B with 2 to 6 percent slopes.

STORM DRAINAGE DESIGN REQUIREMENTS

The proposed stormwater drainage system design was based on standards presented in the Town of Zebulon Public Works Department Street and Storm Drainage Standards and Specifications Manual. The Town of Zebulon requires the following criteria:

- The minimum pipe culvert shall be 15" inches to minimize clogging and maintenance for all pipe culverts within Town of Zebulon Right-of-ways and easement.
- All pipe culverts to be a minimum class III reinforced concrete with a minimum pipe cover equal to 2 feet measured from the proposed finish grade to the top of the pipe. (*Section 5.0.2C*).

There are two storm drain systems proposed on site that drain to the proposed wet pond. There is a third storm drain system that collects a portion of Jones Street that will bypass the pond.

Rainfall Intensity and Time of Concentration

The 10-year, 5-minute rainfall intensity used in the design of the storm drainage system is **7.21 in/hr.** The time of concentration used in the design of the storm drainage system was assumed to be **5 minutes**.

A complete analysis of the rainfall data can be found in Appendix A of this report. A complete analysis of the storm drain design and calculations can be found in Appendix C of this report.

PEAK RUNOFF ANALYSIS

Pre-Development Conditions

The site is currently a single-family residential and wooded area. The site has two drainage areas. For the purposes of SCM design and Downstream Impact Analysis, the drainage areas were analyzed in this report with their own study points, composite runoff curve numbers and points of analysis.

DA#1 Pre-Developed Area directs water to the southeast corner of the lot and is in the Moccasin Creek watershed. DA#2 Pre-Developed Area directs water to an existing storm sewer system in the northeast corner of the lot that drains to the Little River watershed. The characteristics for the pre-development condition are shown below and additional calculations such as can be found in Appendix B. A drainage map identifying the basin can also be found in Appendix B.

	Total	On-Site	Composite	Time of
Basin ID	Area	Area	Curve Number	Concentration
	[acres]	[acres]	(CN)	(Tc) [min.]
DA#1 Pre-Developed Area	3.41	2.62	57	24
DA#2 Pre-Developed Area	0.84	0.76	58	22.2

Table 2: Pre-Development Drainage Area Summaries

Post-Development Conditions

The post-development condition contains two drainage areas and two bypass drainage areas.

DA#1 Post-Developed Area consists of the proposed development area. The drainage area collects runoff with catch basins, curb inlets, and drainage pipes that connect to the proposed Stormwater Wetlands and discharges in the southeast corner of the lot towards Moccasin Creek. DA#2 Post-Developed Area directs water to an existing storm sewer system in the northeast corner of the lot that drains to the Little River watershed. The characteristics for the post-development drainage areas are shown below and calculations can be found in Appendix B. A drainage map identifying the area can be found in Appendix A.

	Total	On-Site	Composite	Time of
Basin ID	Area	Area	Curve Number	Concentration
	[acres]	[acres]	(CN)	(Tc) [min.]
DA#1 Post-Developed Area	3.16	2.87	83	4.2
DA#2 Post-Developed Area	0.34	0.31	60	22.2

 Table 3: Post-Development Drainage Area Summaries

Table 4: Post Development Bypass Basin Summaries

			Time of
Drainage Area ID	Area [acres]	Composite Curve	Concentration
		Number (CN)	(Tc) [min.]
DA#1 Post-Developed Bypass Area	0.13	73	5
DA#2 Post-Developed Bypass Area	0.00	98	5

Comparison of Peak Discharges

The pre- and post- development peak discharges are shown below for both drainage areas. Full calculations and hydrographs can be found on Appendix B.

Table 5: Drainage Area #1 Peak Discharges

	Pre-Dev.	Post-Dev. w/o Detention	Post-Dev. w/ Detention
	Peak Discharge Rate	Peak Discharge Rate	Peak Discharge Rate
Storm Event	(cfs)	(cfs)	(cfs)
1-yr 24-hr	0.224	7.077	0.198
2-yr 24-hr	0.743	9.702	0.475
10-yr 24-hr	3.321	17.25	2.697
100-yr 24-hr	9.617	30.29	11.62

 Table 6: Drainage Area #2 Peak Discharges

	Pre-Dev.	Post-Dev. Peak
	Peak Discharge Rate	Discharge Rate
Storm Event	(cfs)	(cfs)
1-yr 24-hr	0.078	0.054
2-yr 24-hr	0.237	0.097
10-yr 24-hr	0.977	0.256
100-yr 24-hr	2.718	1.193

DOWNSTREAM IMPACT ANALYSIS

A downstream impact analysis is included per the 10% rule. For Drainage Area #1, the StreamStats analysis point has a drainage area of approximately 89.6 acres, more than the 10% of the proposed development drainage area, and a 10-year peak flood flow of 123 cfs. This estimates an impervious area of 20.02% using the NLCD 2006 impervious data set. The "full build-out" condition was modeled by changing this impervious area to 100% and it produced a flow of 498 cfs. The 123 and 498 cfs conditions were modeled as channels. The existing channel was identified and measured using Wake County iMaps. The channels were modeled with an assumed height of 4 ft and was able to contain both scenarios.

For Drainage Area #1 the Pre-Developed flow for the 10-year storm event is 3.321 cfs (per hydrographs). The Post-Developed condition, including bypass, results in 2.697 cfs. This is an decrease of 0.624. Since the 10-year storm event is being attenuated through the wet pond, there is a net decrease in peak flow from the pre-developed to post-developed condition. Therefore, there will be no impacts downstream.

	Pre-Developed (Q-10)	Post-Developed (Q-10)
Site	3.061 cfs	2.697 cfs
10% Point	123 cfs	122.4 cfs
Full Build-Out Condition	498 cfs	497.4 cfs

Table 7: Downstream Impact Analysis Summary Table (Drainage Area 1)

For Drainage Area #2, the StreamStats analysis point has a drainage area of approximately 89.6 acres, more than the 10% of the proposed development drainage area, and a 10-year peak flood flow of 34.2 cfs. This estimates an impervious area of 14.48% using the NLCD 2006 impervious data set. The "full build-out" condition was modeled by changing this impervious area to 100% and it produced a flow of 153 cfs. The 34.2 and 153 cfs conditions were modeled as channels. The existing channel was identified and measured using Wake County iMaps. The channels were modeled with an assumed height of 4 ft and was able to contain both scenarios.

For Drainage Area #2 the Pre-Developed flow for the 10-year storm event is 0.977 cfs (per hydrographs). The Post-Developed condition, including bypass, results in 0.478 cfs. This is a

decrease of 0.490 cfs. There is a net decrease in peak flow from the pre-developed to postdeveloped condition. Therefore, there will be no impacts downstream.

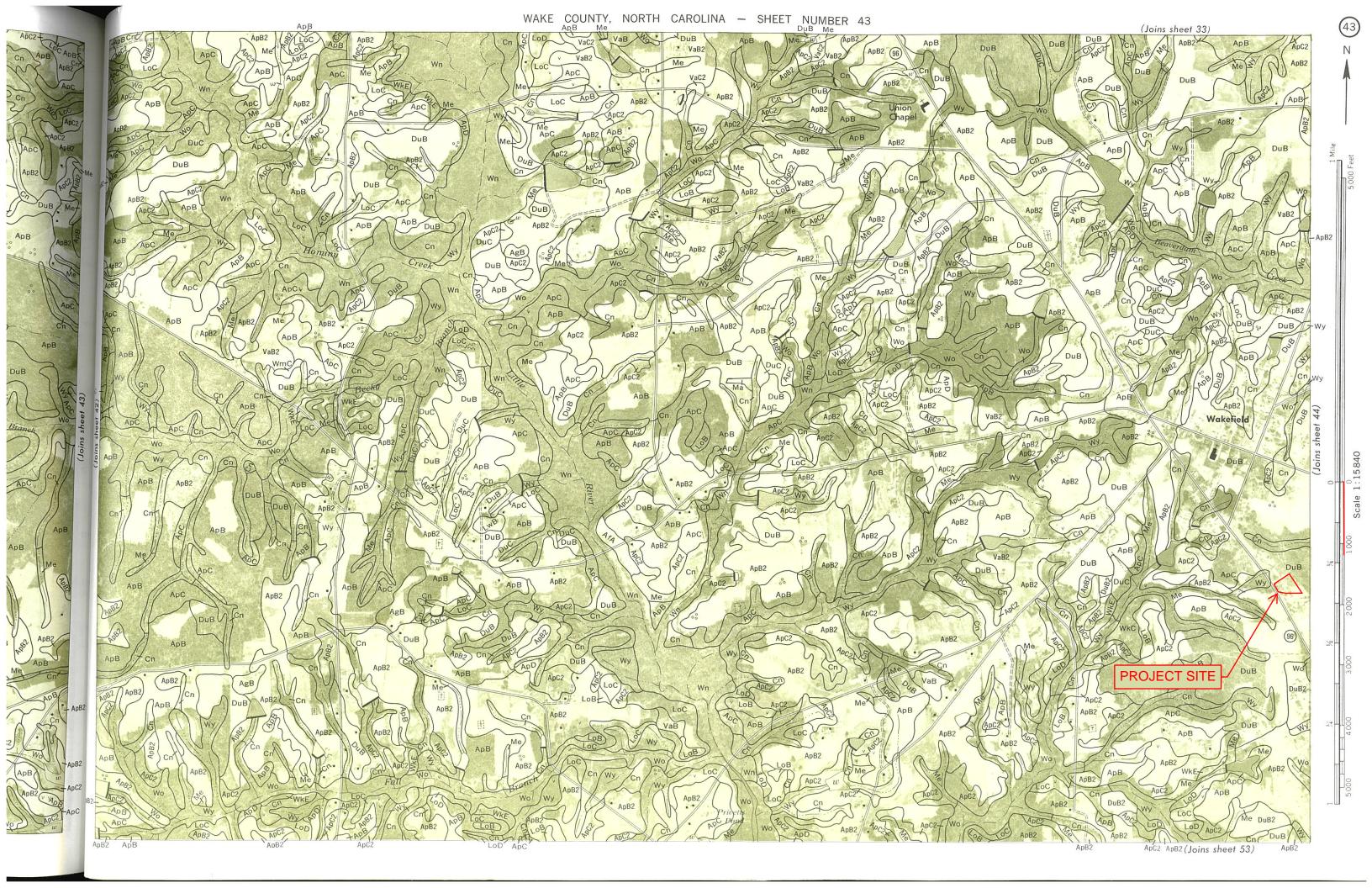
	Pre-Developed (Q-10)	Post-Developed (Q-10)
Site	0.977 cfs	0.478 cfs
10% Point	34.2 cfs	33.71 cfs
Full Build-Out Condition	153 cfs	152.5 cfs

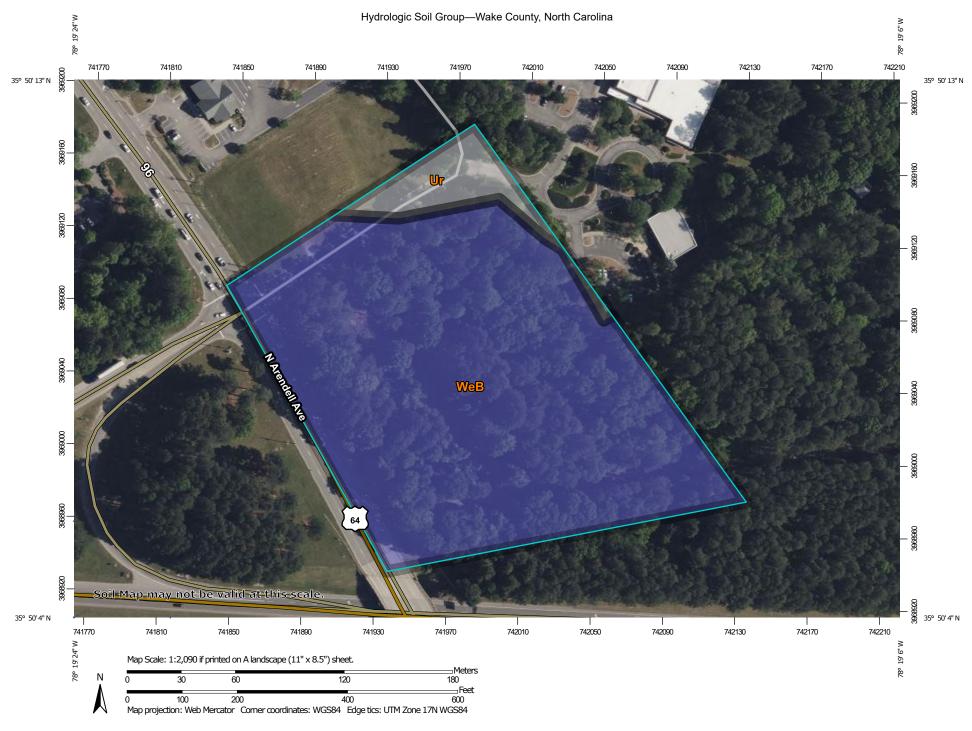
 Table 8: Downstream Impact Analysis Summary Table (Drainage Area 2)

EROSION CONTROL

Erosion control measures have been designed in accordance with NCDEQ erosion control standards and regulations to minimize sediment laden runoff from exiting the site. Silt fence will be installed along the low sides of the site prior to construction. The construction entrance will be installed prior to construction commencing. A skimmer basin will be used to treat stormwater runoff prior to leaving the site. Accumulated sediment within the project site will need to be removed and the pond constructed to final design conditions prior to final acceptance of the project.

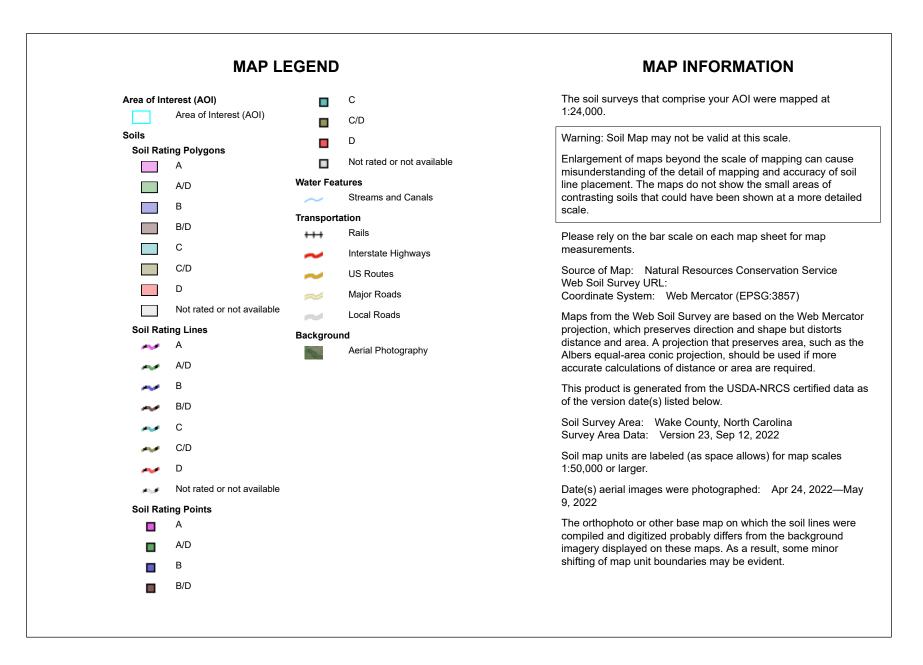
Site Stabilization


During construction phase, a temporary sediment basin will be placed on the site. Skimmers will be used in the temporary sediment basin to dewater the basin from the surface. After final grading is completed, permanent vegetation shall be applied in accordance with the seeding requirements from NCDEQ, the erosion control plan, and the landscape plan for this site.



APPENDIX A Figures

Aerial Map Soil Report Topography Map FEMA Flood Map HUC Surface Waters Classification NOAA Point Precipitation Frequency Estimates Pre-Development Drainage Map Post-Development Drainage Map Post-Development Bypass Drainage Map



USDA Natural Resources

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ur	Urban land		0.7	7.6%
WeB	Wedowee sandy loam, 2 to 6 percent slopes	В	8.8	92.4%
Totals for Area of Interest			9.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

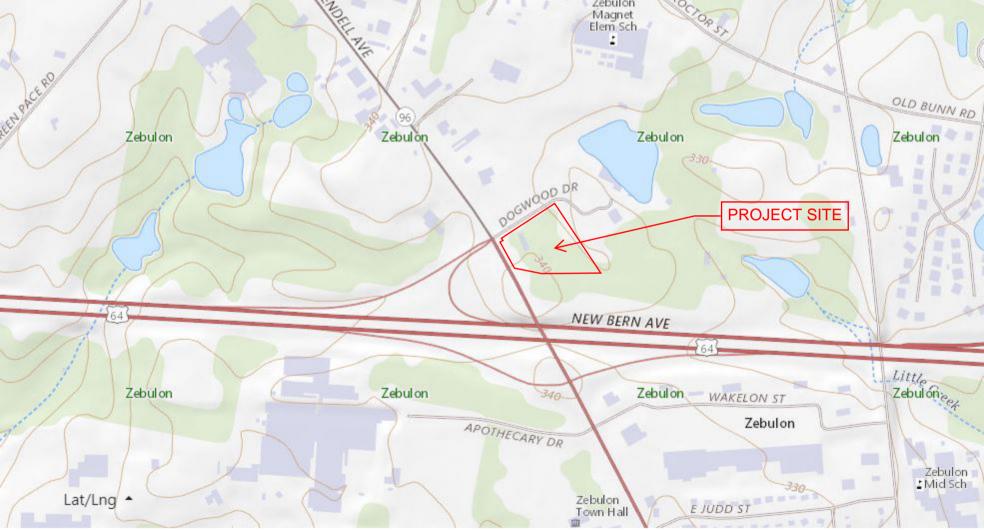
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

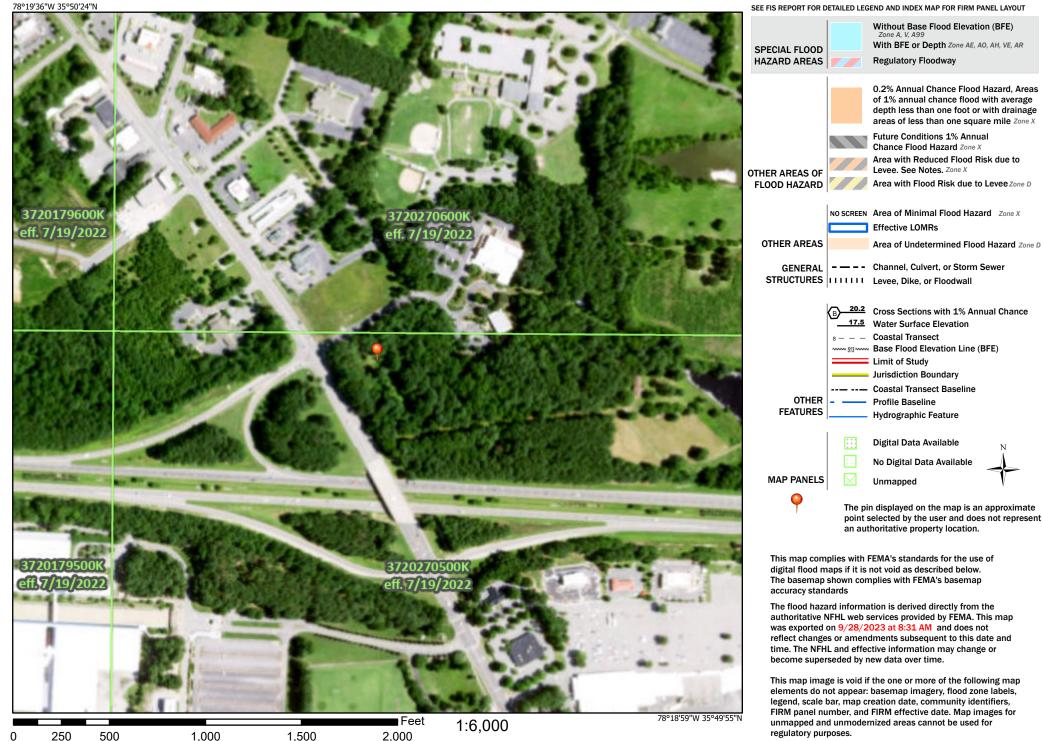
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

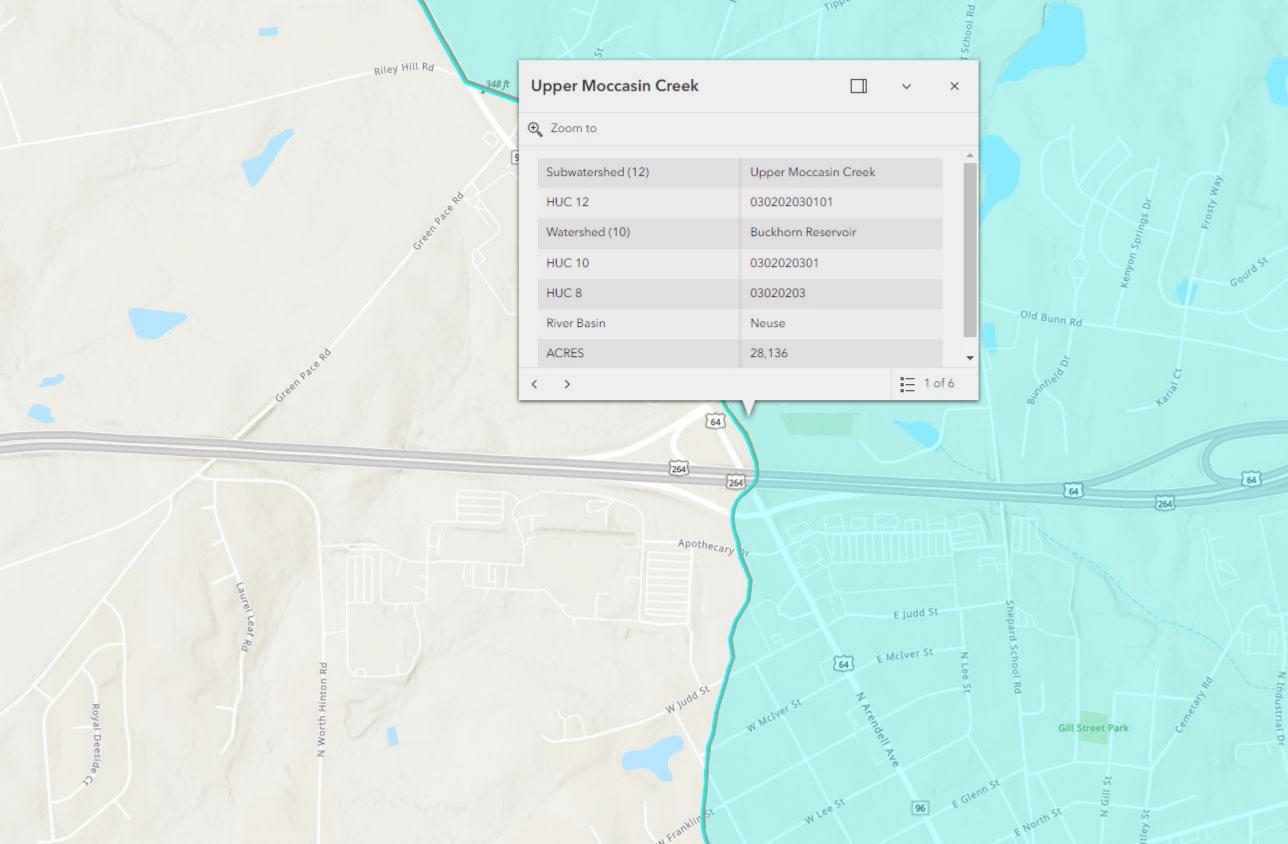

Rating Options

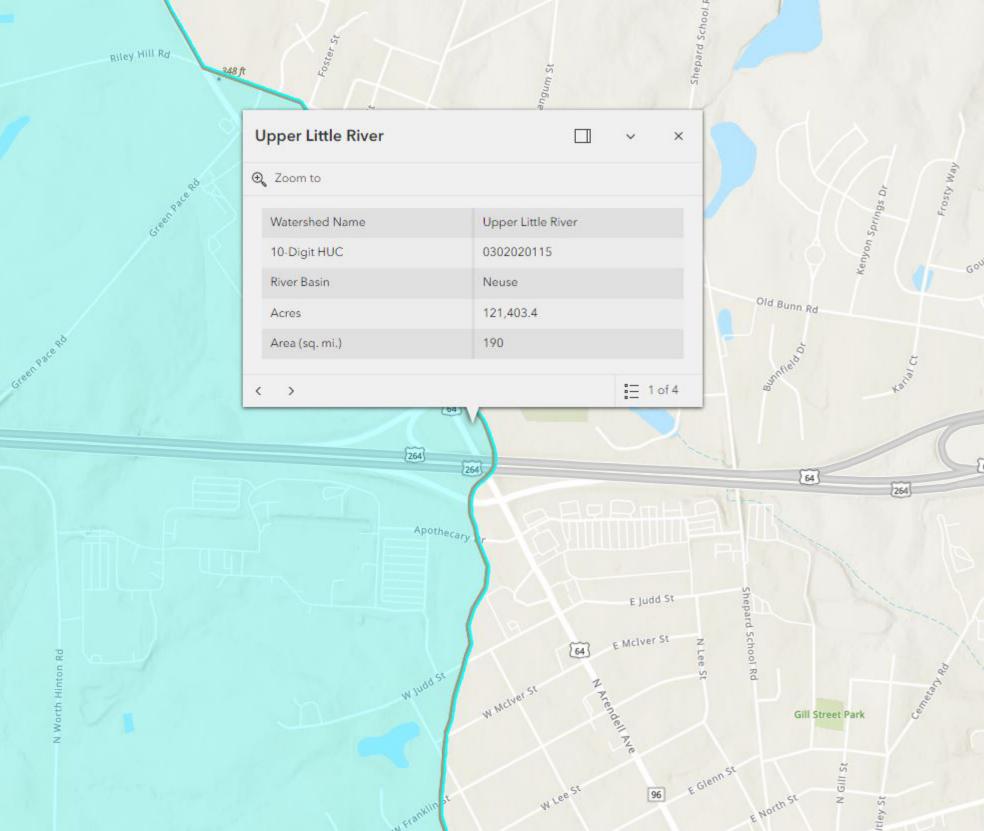
Aggregation Method: Dominant Condition

USDA

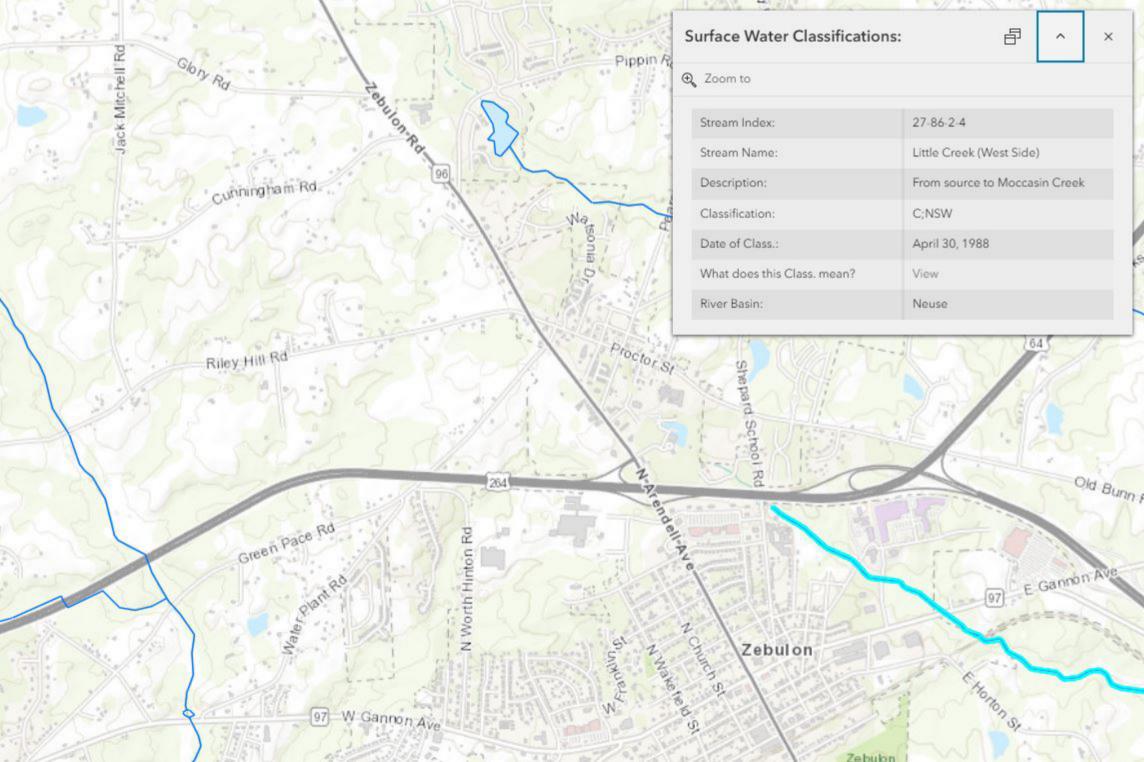
Component Percent Cutoff: None Specified Tie-break Rule: Higher

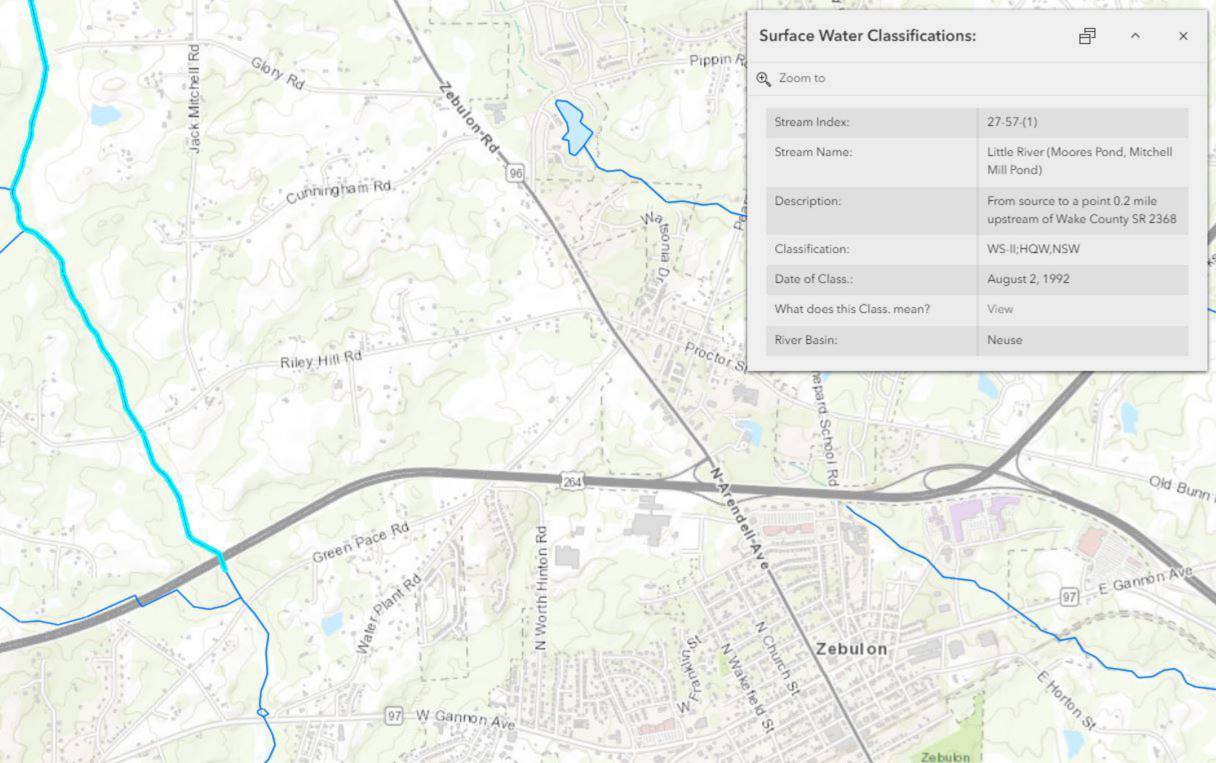



National Flood Hazard Layer FIRMette


Legend

Basemap Imagery Source: USGS National Map 2023


Riley Hill Rd



51

Royal Deeside Cr

Laurel Leaf Ad

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.8359°, Longitude: -78.3212° Elevation: 336 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

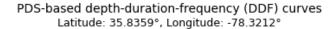
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

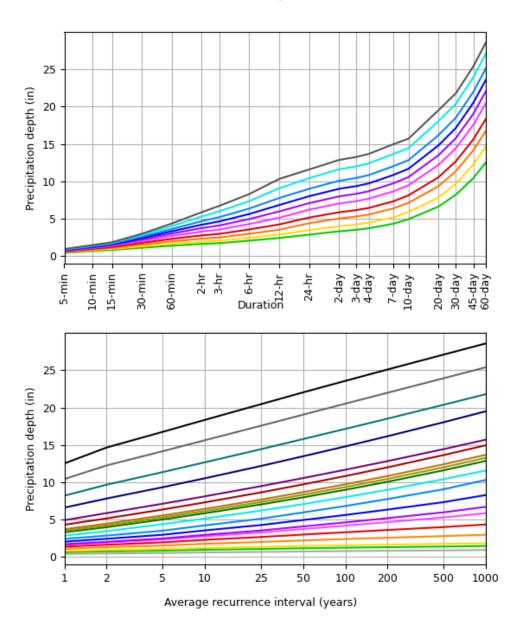
NOAA, National Weather Service, Silver Spring, Maryland

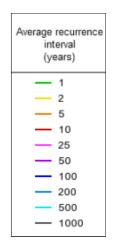
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	S-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration		Average recurrence interval (years)								
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.405	0.468	0.530	0.601	0.670	0.728	0.780	0.827	0.880	0.930
	(0.369-0.444)	(0.428-0.512)	(0.485-0.580)	(0.548-0.657)	(0.609-0.732)	(0.658-0.795)	(0.701-0.851)	(0.739-0.904)	(0.780-0.963)	(0.818-1.02)
10-min	0.646	0.748	0.849	0.961	1.07	1.16	1.24	1.31	1.39	1.46
	(0.590-0.710)	(0.685-0.819)	(0.777-0.929)	(0.877-1.05)	(0.970-1.17)	(1.05-1.27)	(1.11-1.35)	(1.17-1.43)	(1.23-1.52)	(1.29-1.61)
15-min	0.808	0.941	1.07	1.22	1.35	1.47	1.57	1.65	1.75	1.84
	(0.737-0.887)	(0.861-1.03)	(0.983-1.18)	(1.11-1.33)	(1.23-1.48)	(1.33-1.60)	(1.41-1.71)	(1.48-1.81)	(1.55-1.92)	(1.62-2.02)
30-min	1.11	1.30	1.53	1.76	2.00	2.21	2.40	2.57	2.79	2.98
	(1.01-1.22)	(1.19-1.42)	(1.40-1.67)	(1.61-1.92)	(1.82-2.19)	(2.00-2.42)	(2.16-2.62)	(2.30-2.81)	(2.47-3.05)	(2.62-3.27)
60-min	1.38	1.63	1.96	2.29	2.67	3.00	3.30	3.61	4.00	4.35
	(1.26-1.52)	(1.49-1.78)	(1.79-2.14)	(2.09-2.51)	(2.42-2.92)	(2.71-3.27)	(2.97-3.60)	(3.23-3.95)	(3.55-4.38)	(3.82-4.77)
2-hr	1.62	1.91	2.32	2.76	3.27	3.74	4.19	4.66	5.29	5.86
	(1.46-1.79)	(1.74-2.10)	(2.11-2.56)	(2.50-3.03)	(2.94-3.59)	(3.35-4.10)	(3.73-4.59)	(4.13-5.10)	(4.63-5.79)	(5.09-6.44)
3-hr	1.71	2.03	2.47	2.96	3.54	4.08	4.62	5.20	5.97	6.71
	(1.55-1.90)	(1.85-2.24)	(2.25-2.74)	(2.68-3.26)	(3.18-3.90)	(3.65-4.49)	(4.10-5.08)	(4.57-5.71)	(5.20-6.57)	(5.77-7.39)
6-hr	2.05	2.43	2.97	3.55	4.27	4.94	5.62	6.34	7.34	8.28
	(1.87-2.27)	(2.22-2.68)	(2.70-3.27)	(3.23-3.91)	(3.85-4.68)	(4.43-5.41)	(4.99-6.14)	(5.58-6.93)	(6.37-8.02)	(7.10-9.07)
12-hr	2.41 (2.20-2.66)	2.86 (2.62-3.15)	3.51 (3.21-3.86)	4.22 (3.84-4.64)	5.11 (4.62-5.60)	5.96 (5.34-6.50)	6.82 (6.05-7.43)	7.76 (6.80-8.44)	9.06 (7.82-9.86)	10.3 (8.77-11.2)
24-hr	2.85 (2.65-3.09)	3.46 (3.21-3.74)	4.38 (4.06-4.74)	5.14 (4.75-5.55)	6.20 (5.71-6.69)	7.07 (6.48-7.64)	8.00 (7.29-8.64)	8.99 (8.14-9.73)	10.4 (9.34-11.3)	11.6 (10.3-12.6)
2-day	3.30	3.98	5.02	5.85	7.02	7.98	8.99	10.1	11.6	12.9
	(3.07-3.56)	(3.71-4.30)	(4.66-5.41)	(5.42-6.31)	(6.47-7.58)	(7.32-8.61)	(8.21-9.71)	(9.13-10.9)	(10.4-12.6)	(11.4-14.0)
3-day	3.51	4.22	5.29	6.14	7.35	8.33	9.36	10.5	12.0	13.3
	(3.27-3.77)	(3.93-4.54)	(4.92-5.68)	(5.70-6.60)	(6.79-7.90)	(7.66-8.96)	(8.57-10.1)	(9.51-11.3)	(10.8-13.0)	(11.9-14.4)
4-day	3.71 (3.46-3.98)	4.46 (4.16-4.78)	5.56 (5.18-5.95)	6.44 (5.99-6.89)	7.67 (7.11-8.22)	8.68 (8.00-9.30)	9.73 (8.93-10.4)	10.8 (9.89-11.7)	12.4 (11.2-13.4)	13.7 (12.3-14.8)
7-day	4.31	5.16	6.35	7.31	8.64	9.71	10.8	12.0	13.6	15.0
	(4.03-4.61)	(4.82-5.52)	(5.93-6.80)	(6.81-7.82)	(8.02-9.24)	(8.99-10.4)	(9.97-11.6)	(11.0-12.9)	(12.4-14.7)	(13.5-16.2)
10-day	4.92	5.87	7.12	8.11	9.47	10.6	11.7	12.8	14.4	15.7
	(4.61-5.25)	(5.50-6.26)	(6.67-7.59)	(7.59-8.64)	(8.83-10.1)	(9.81-11.3)	(10.8-12.5)	(11.8-13.7)	(13.2-15.5)	(14.3-16.9)
20-day	6.60 (6.21-7.03)	7.82 (7.36-8.32)	9.33 (8.77-9.93)	10.5 (9.88-11.2)	12.2 (11.4-12.9)	13.5 (12.6-14.3)	14.8 (13.8-15.8)	16.2 (15.0-17.2)	18.0 (16.6-19.3)	19.5 (17.8-20.9)
30-day	8.20 (7.74-8.70)	9.67 (9.13-10.3)	11.4 (10.7-12.0)	12.7 (11.9-13.4)	14.4 (13.5-15.3)	15.8 (14.8-16.8)	17.1 (16.0-18.2)	18.5 (17.2-19.7)	20.4 (18.9-21.7)	21.8 (20.1-23.3)
45-day	10.4 (9.90-11.0)	12.3 (11.6-12.9)	14.2 (13.4-14.9)	15.6 (14.8-16.5)	17.6 (16.6-18.6)	19.0 (18.0-20.1)	20.5 (19.3-21.7)	22.0 (20.6-23.3)	23.9 (22.3-25.4)	25.4 (23.6-27.0)
60-day	12.5 (11.9-13.2)	14.7 (13.9-15.4)	16.7 (15.9-17.6)	18.4 (17.4-19.3)	20.4 (19.4-21.5)	22.0 (20.8-23.2)	23.6 (22.2-24.9)	25.1 (23.6-26.5)	27.1 (25.4-28.7)	28.6 (26.7-30.4)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

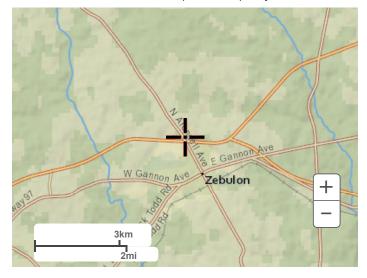

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration						
5-min	2-day					
10-min	- 3-day					
- 15-min	4-day					
- 30-min	7-day					
- 60-min	- 10-day					
— 2-hr	20-day					
— 3-hr						
— 6-hr	— 45-day					
- 12-hr						
24-hr						

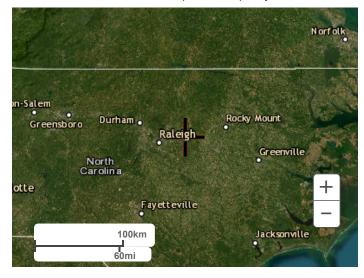

NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Mon Sep 11 12:32:23 2023

Back to Top

Maps & aerials

Small scale terrain


Large scale terrain

Large scale map Norfolk 95 n-Salem Greensboro Durham Rocky Mount Greenville North Carolina +otte Fayetteville 100km Jacksonville 60mi

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.8359°, Longitude: -78.3212° Elevation: 336 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

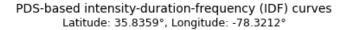
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

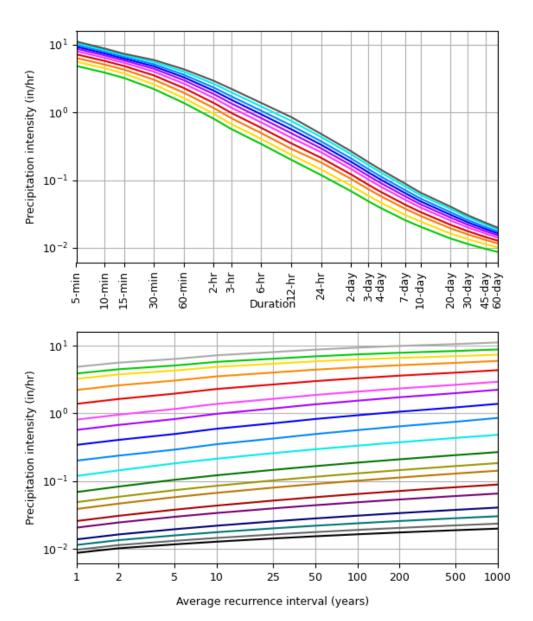
NOAA, National Weather Service, Silver Spring, Maryland

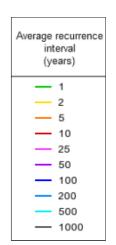
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour)									
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.86 (4.43-5.33)	5.62 (5.14-6.14)	6.36 (5.82-6.96)	7.21 (6.58-7.88)	8.04 (7.31-8.78)	8.74 (7.90-9.54)	9.36 (8.41-10.2)	9.92 (8.87-10.8)	10.6 (9.36-11.6)	11.2 (9.82-12.3)
10-min	3.88	4.49	5.09	5.77	6.41	6.95	7.43	7.86	8.35	8.79
	(3.54-4.26)	(4.11-4.91)	(4.66-5.57)	(5.26-6.30)	(5.82-7.00)	(6.29-7.60)	(6.68-8.11)	(7.03-8.59)	(7.40-9.14)	(7.73-9.64)
15-min	3.23	3.76	4.30	4.86	5.41	5.87	6.26	6.61	7.01	7.36
	(2.95-3.55)	(3.44-4.12)	(3.93-4.70)	(4.44-5.32)	(4.92-5.91)	(5.31-6.42)	(5.63-6.84)	(5.91-7.23)	(6.21-7.67)	(6.46-8.07)
30-min	2.22	2.60	3.05	3.52	4.01	4.42	4.80	5.15	5.57	5.96
	(2.02-2.43)	(2.38-2.84)	(2.79-3.34)	(3.21-3.85)	(3.64-4.38)	(4.00-4.83)	(4.31-5.23)	(4.60-5.63)	(4.94-6.10)	(5.23-6.53)
60-min	1.38	1.63	1.96	2.29	2.67	3.00	3.30	3.61	4.00	4.35
	(1.26-1.52)	(1.49-1.78)	(1.79-2.14)	(2.09-2.51)	(2.42-2.92)	(2.71-3.27)	(2.97-3.60)	(3.23-3.95)	(3.55-4.38)	(3.82-4.77)
2-hr	0.807	0.956	1.16	1.38	1.64	1.87	2.10	2.33	2.64	2.93
	(0.731-0.894)	(0.870-1.05)	(1.06-1.28)	(1.25-1.52)	(1.47-1.79)	(1.68-2.05)	(1.86-2.29)	(2.06-2.55)	(2.32-2.90)	(2.54-3.22)
3-hr	0.569	0.675	0.823	0.985	1.18	1.36	1.54	1.73	1.99	2.23
	(0.516-0.633)	(0.615-0.746)	(0.748-0.911)	(0.892-1.09)	(1.06-1.30)	(1.22-1.50)	(1.36-1.69)	(1.52-1.90)	(1.73-2.19)	(1.92-2.46)
6-hr	0.342	0.405	0.495	0.593	0.712	0.825	0.938	1.06	1.22	1.38
	(0.311-0.379)	(0.370-0.447)	(0.451-0.545)	(0.538-0.652)	(0.643-0.781)	(0.739-0.903)	(0.833-1.03)	(0.931-1.16)	(1.06-1.34)	(1.18-1.51)
12-hr	0.200	0.237	0.291	0.350	0.424	0.494	0.565	0.643	0.751	0.856
	(0.182-0.220)	(0.217-0.261)	(0.266-0.320)	(0.319-0.385)	(0.383-0.464)	(0.443-0.539)	(0.502-0.616)	(0.564-0.700)	(0.649-0.818)	(0.727-0.932)
24-hr	0.118 (0.110-0.128)	0.143 (0.133-0.155)	0.182 (0.169-0.197)	0.214 (0.197-0.231)	0.258 (0.237-0.278)	0.294 (0.270-0.318)	0.333 (0.303-0.360)	0.374 (0.339-0.405)	0.433 (0.389-0.470)	0.482 (0.429-0.525)
2-day	0.068	0.082	0.104	0.121	0.146	0.166	0.187	0.209	0.241	0.267
	(0.063-0.074)	(0.077-0.089)	(0.097-0.112)	(0.112-0.131)	(0.134-0.157)	(0.152-0.179)	(0.170-0.202)	(0.190-0.226)	(0.217-0.262)	(0.238-0.292)
3-day	0.048	0.058	0.073	0.085	0.102	0.115	0.129	0.145	0.166	0.184
	(0.045-0.052)	(0.054-0.063)	(0.068-0.078)	(0.079-0.091)	(0.094-0.109)	(0.106-0.124)	(0.119-0.140)	(0.132-0.156)	(0.150-0.180)	(0.164-0.200)
4-day	0.038	0.046	0.057	0.067	0.079	0.090	0.101	0.112	0.129	0.142
	(0.036-0.041)	(0.043-0.049)	(0.053-0.062)	(0.062-0.071)	(0.074-0.085)	(0.083-0.096)	(0.092-0.108)	(0.102-0.121)	(0.116-0.139)	(0.127-0.154)
7-day	0.025	0.030	0.037	0.043	0.051	0.057	0.064	0.071	0.081	0.089
	(0.023-0.027)	(0.028-0.032)	(0.035-0.040)	(0.040-0.046)	(0.047-0.055)	(0.053-0.061)	(0.059-0.069)	(0.065-0.076)	(0.073-0.087)	(0.080-0.096)
10-day	0.020	0.024	0.029	0.033	0.039	0.043	0.048	0.053	0.060	0.065
	(0.019-0.021)	(0.022-0.026)	(0.027-0.031)	(0.031-0.036)	(0.036-0.042)	(0.040-0.046)	(0.045-0.051)	(0.049-0.057)	(0.055-0.064)	(0.059-0.070)
20-day	0.013	0.016	0.019	0.021	0.025	0.028	0.030	0.033	0.037	0.040
	(0.012-0.014)	(0.015-0.017)	(0.018-0.020)	(0.020-0.023)	(0.023-0.026)	(0.026-0.029)	(0.028-0.032)	(0.031-0.035)	(0.034-0.040)	(0.037-0.043)
30-day	0.011	0.013	0.015	0.017	0.020	0.021	0.023	0.025	0.028	0.030
	(0.010-0.012)	(0.012-0.014)	(0.014-0.016)	(0.016-0.018)	(0.018-0.021)	(0.020-0.023)	(0.022-0.025)	(0.023-0.027)	(0.026-0.030)	(0.027-0.032)
45-day	0.009	0.011	0.013	0.014	0.016	0.017	0.019	0.020	0.022	0.023
	(0.009-0.010)	(0.010-0.011)	(0.012-0.013)	(0.013-0.015)	(0.015-0.017)	(0.016-0.018)	(0.017-0.020)	(0.019-0.021)	(0.020-0.023)	(0.021-0.025)
60-day	0.008	0.010	0.011	0.012	0.014	0.015	0.016	0.017	0.018	0.019
	(0.008-0.009)	(0.009-0.010)	(0.011-0.012)	(0.012-0.013)	(0.013-0.014)	(0.014-0.016)	(0.015-0.017)	(0.016-0.018)	(0.017-0.019)	(0.018-0.021)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

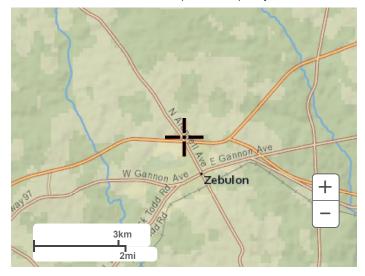

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration								
5-min	2-day							
10-min	— 3-day							
15-min	— 4-day							
— 30-min	- 7-day							
- 60-min	— 10-day							
— 2-hr	- 20-day							
— 3-hr	— 30-day							
— 6-hr	— 45-day							
- 12-hr	- 60-day							
24-hr								

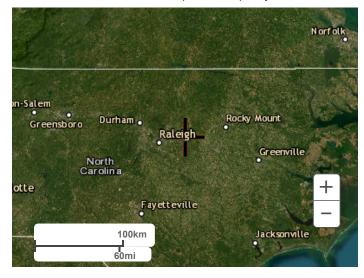

NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Mon Sep 11 12:32:46 2023

Back to Top

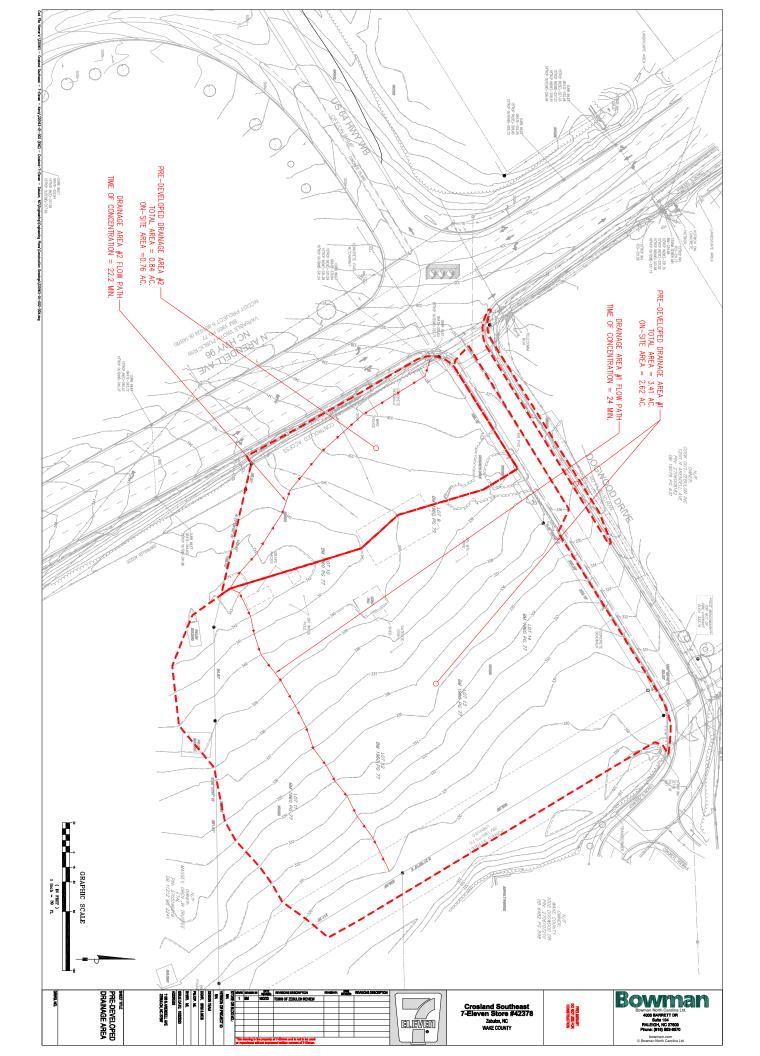
Maps & aerials

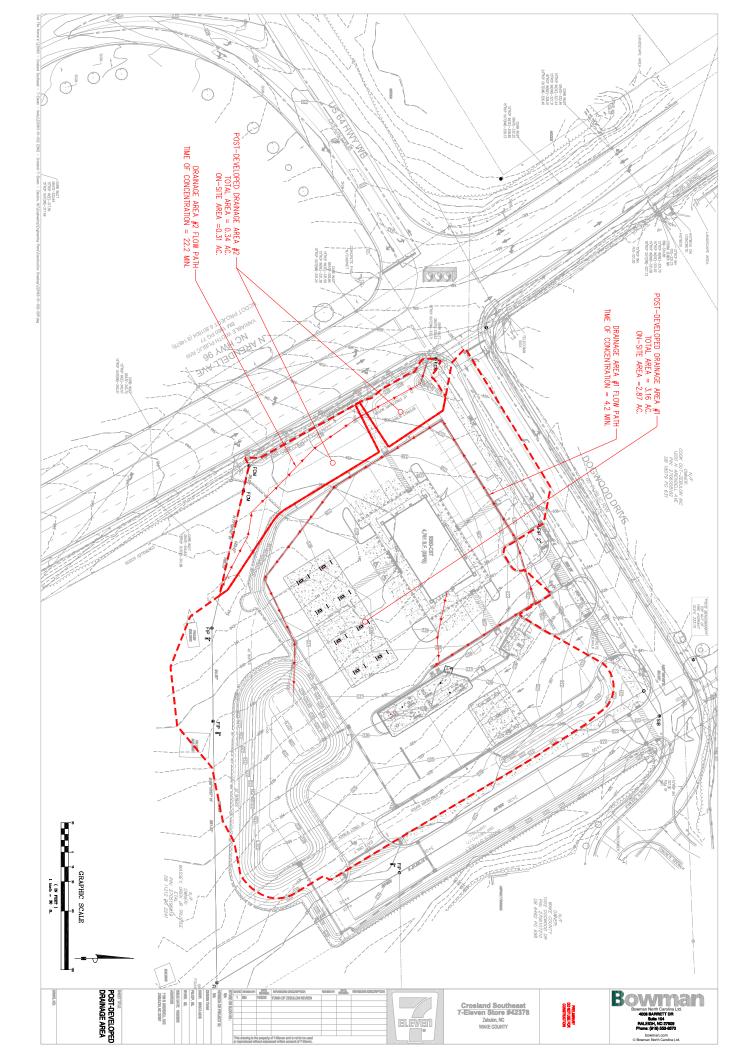
Small scale terrain

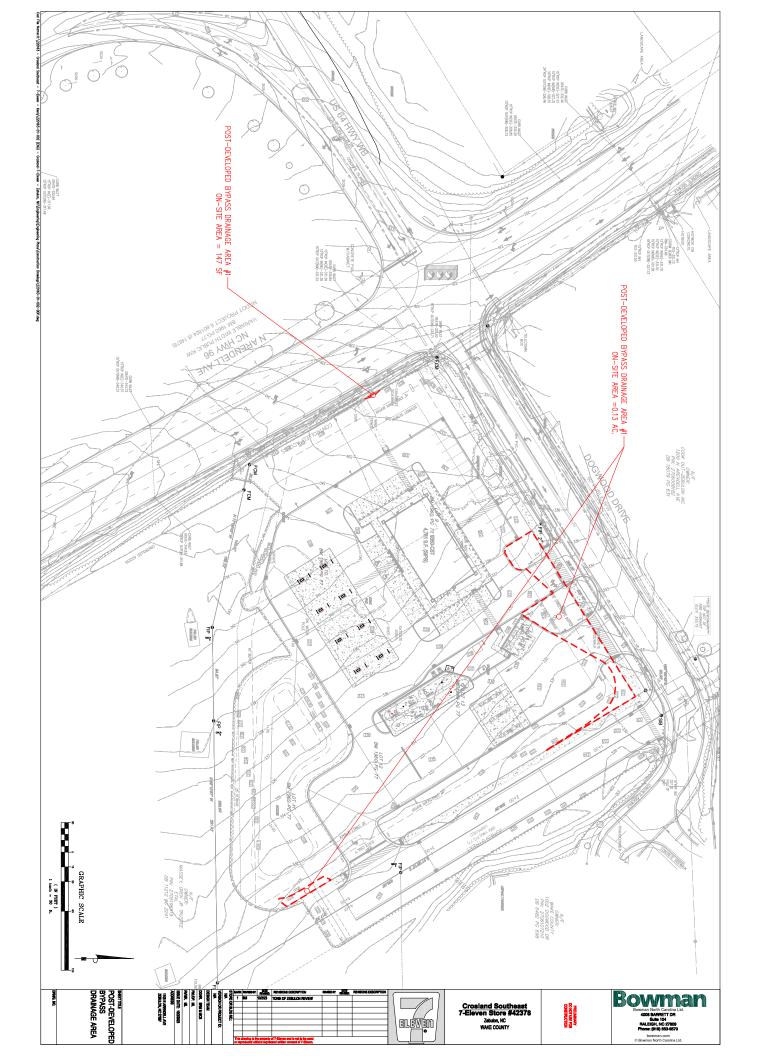

Large scale terrain

Large scale map Norfolk 95 n-Salem Greensboro Durham Rocky Mount Greenville North Carolina +otte Fayetteville 100km Jacksonville 60mi

Large scale aerial


Precipitation Frequency Data Server




Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX B

Stormwater Analysis

Wake County Stormwater Design Tool CN Calculation (Bypass) Stormwater Wetland Design and Details Hydrographs (DA#1 & DA#2) Downstream Impact Analysis (DA#1 & DA#2)

SITE DATA

	Project Name: Applicant Applicant Contact Name: Applicant Contact Number: Contact Email: Inicipal Jurisdiction (Select from dropdown menu): Last Updated: Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): rpe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website):	Project Information 7-Eleven Zebulon C4 Cstore Holdings III, LLC Nick Carroll (502) 693-0396 ncarroll@csere.com Zebulon Tuesday, December 5, 2023 Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High 0.00 2.85 3.46 5.14 Lot Data (if applicable):
	Applicant: Applicant Contact Name: Applicant Contact Number: Contact Email: Inicipal Jurisdiction (Select from dropdown menu): Last Updated: Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): Impervious Surface Area (acre): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website):	C4 Cstore Holdings III, LLC Nick Carroll (502) 693-0396 ncarroll@csere.com Zebulon Tuesday, December 5, 2023 Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 3.46 5.14
	Applicant Contact Name: Applicant Contact Number: Contact Email: Inicipal Jurisdiction (Select from dropdown menu): Last Updated: Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): Percent Built Upon Area (BUA): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website):	Nick Carroll (502) 693-0396 ncarroll@csere.com Zebulon Tuesday, December 5, 2023 Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 3.46 5.14
	Applicant Contact Number: Contact Email: Inicipal Jurisdiction (Select from dropdown menu): Last Updated: Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): rpe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website):	(502) 693-0396 ncarroll@csere.com Zebulon Tuesday, December 5, 2023 Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 2 3.46 3.46 5.14
	Contact Email: Inicipal Jurisdiction (Select from dropdown menu): Last Updated: Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): rpe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	ncarroll@csere.com Zebulon Tuesday, December 5, 2023 Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 3.46 5.14
	Inicipal Jurisdiction (Select from dropdown menu): Last Updated: Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (Acc): Impervious Surface Area (Acc): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website):	Zebulon Tuesday, December 5, 2023 Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 2.85 3.46 5.14
	Last Updated: Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (Acc): Impervious Surface Area (Acc): Impervious Surface Area (Acc): Project Density: Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	Tuesday, December 5, 2023 Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 2.85 3.46 5.14
	Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (Acc): Impervious Surface Area (Acc): Impervious Surface Area (Acc): Project Density: Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	Site Data: 3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 2.85 3.46 5.14
	Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): rpe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	3.40 0.00 4.30 1.81 Non-Residential 53% High No 2 2.85 3.46 5.14
	Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): rpe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	0.00 4.30 1.81 Non-Residential 53% High No 2 2.85 2.85 3.46 5.14
	Proposed Disturbed Area (Ac): Impervious Surface Area (acre): rpe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	4.30 1.81 Non-Residential 53% High No 2 2.85 3.46 5.14
	Impervious Surface Area (acre): rpe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NO	1.81 Non-Residential 53% High 0 2 2.85 3.46 5.14
	pe of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	Non-Residential 53% High 0 2 2.85 3.46 5.14
	Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	53% High No 2 2.85 3.46 5.14
<u>NOAA</u> 2-	Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	High No 2 2.85 3.46 5.14
<u>NOAA</u> 2-	Is the proposed project a site expansion? Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	No 2 2.85 3.46 5.14
<u>NOAA</u> 2-	Number of Drainage Areas on Site: Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	2 2.85 3.46 5.14
<u>NOAA</u> 2-	Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	2.85 3.46 5.14
<u>NOAA</u> 2-	Year, 24-Hour Storm (inches) (See NOAA Website): Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	3.46 5.14
	Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots:	5.14
	Total Acreage in Lots: Number of Lots:	
	Number of Lots:	
	Number of Lots:	
	Average Lot Size (SF):	
	Total Impervious Surface Area on Lots (SF):	
	Average Impervious Surface Area Per Lot (SF):	
	Stormwater Narrative (limit to 1.200	characters - attach additional pages with submittal if necessary):
been designed for post-de is designed to capture a de runoff from the impervious	velopment peak attenuation and water quality. The prop rainage area of 3.16 ac with an impervious area of 1.91	. The design includes the 7-Eleven site (3.40 ac) and right-of-way improvements. The SCM outlined in this report has osed site will have 1.81 acres of impervious area, and 1.77 of those acres will go to the stormwater welland. The SCM ac. This includes on and off-site areas. Site grading and storm drainage systems are designed to convey stormwater not located within a coastal county, therefore the design storm for water quality is a 1.0° storm event. The SCMs are

Project Name:

7-Eleven Zebulon

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA		RE-DEVE	LOPMEN	T	POST-DEVELOPMENT						
Drainage Area (Acres)=	3.41				3.16						
Site Acreage within Drainage=	2.62				2.87						
One-year, 24-hour rainfall (in)=		2.85									
Two-year, 24-hour rainfall (in)=	3.46										
Ten-year, 24-hour storm (in)=		5.14									
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	А	В	С	D	A B C D						
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition		2.29				0.22					
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition		0.25				0.88					
Reforestation (in dedicated OS)											
Connected Impervious		0.08				1.77					
Disconnected Impervious											
SITE FLOW	PR	E-DEVEL	OPMEN	Г Т _с	POST-DEVELOPMENT Tc						
Sheet Flow											
Length (ft)=	100.00				82.00						
Slope (ft/ft)=	0.040				0.010						
Surface Cover:	Woods				Paved, Gravel, or Bare Soil						
n-value=	0.400				0.011						
T _t (hrs)=		0.2	287		0.024						
Shallow Flow											
Length (ft)=		672	2.00								
Slope (ft/ft)=		0.0	010								
Surface Cover:		Unp	aved								
Average Velocity (ft/sec)=		1.	61								
T _t (hrs)=		0.	12								
Channel Flow 1											
Length (ft)=					703.00						
Slope (ft/ft)=					0.005						
Cross Sectional Flow Area (ft ²)=					1.23						
Wetted Perimeter (ft)=						3.	93				
Channel Lining:					Concrete, finished						
n-value=						0.0	012				
Hydraulic Radius (ft)=						0.	31				
Average Velocity (ft/sec)=						4.	05				
T _t (hrs)=						0.	05				

Project Name:

7-Eleven Zebulon

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)= Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.40	0.07
RESULTS	PRE-DEVELOPMENT	
Composite Curve Number=	57	83
Composite Curve Number=		
Composite Curve Number= Disconnected Impervious Adjustment		83
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	57	83
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	57	83 3
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	57	83 3
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	57	83 3
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	57 8: 6,3	83 3 49
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*1-year=	57 8. 6,3 0.20	83 3 49 1.35 14,050
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (tt ³) =	57 8: 6,3 0.20 1,917	83 3 49 1.35 14,050
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	57 8 6,3 0.20 1,917 12,	83 3 49 1.35 14,050 133
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft ³) = Volume cond runoff (ft ³) = Peak Discharge (cfs)= Q _{1-year} =	57 8 6,3 0.20 1,917 12,	83 3 49 1.35 14,050 133
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft ³) = Volume control f(ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID)	57 8 0.20 1,917 12, 0.272	83 3 49 1.35 14,050 133 7.323
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*1-year= Volume of runoff (ft ³) = Peak Discharge (cfs) = Q1-year= 2-year, 24-hour storm (LID) Runoff (inches) = Q*2-year=	57 8 0.20 1,917 12,7 0.272 0.40	83 3 49 1.35 14,050 133 7.323 1.85
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	57 8 0.20 1,917 12, 0.272 0.40 3,802	83 3 49 1.35 14,050 133 7.323 1.85 19,272
Composite Curve Number= Disconnected Impervious Adjustment Disconnected Impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft ³) = Volume change (ft ³) Peak Discharge (cfs)= Q_1-year= 2-year, 24-hour storm (LID) Runoff (inches) = Q*_2-year= Volume of runoff (ft ³) =	57 8 0.20 1,917 12, 0.272 0.40 3,802	83 3 49 1.35 14,050 133 7.323 1.85 19,272
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = $CN_{adjusted (1-year)}$ = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q [*] _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q [*] _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{2-year} = 10-year, 24-hour storm (DIA)	57 8 0.20 1,917 12, 0.272 0.40 3,802 0.540	83 3 49 1.35 14,050 133 7.323 1.85 19,272 10.045

Project Name:

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA		RE-DEVE	LOPME	NT	POST-DEVELOPMENT						
Drainage Area (Acres)=		0.	84		0.34						
Site Acreage within Drainage=		0.	76		0.31						
One-year, 24-hour rainfall (in)=		2.85									
Two-year, 24-hour rainfall (in)=		3.46									
Ten-year, 24-hour storm (in)=	5.14										
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):		В	С	D	A B C D						
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition		0.66				0.06					
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition		0.06				0.25					
Reforestation (in dedicated OS)											
Connected Impervious		0.05				0.00					
Disconnected Impervious											
ITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POST-DEVELOPMENT Tc						
Sheet Flow											
Length (ft)=	100.00				100.00						
Slope (ft/ft)=	0.025				0.025						
Surface Cover:	Woods				Woods						
n-value=		0.4	400		0.400						
T _t (hrs)=		0.3	347		0.347						
Shallow Flow											
Length (ft)=		226	6.00			190	0.00				
Slope (ft/ft)=	0.023				0.035						
Surface Cover:		Unp	aved		Unpaved						
Average Velocity (ft/sec)=	2.45				3.02						
T _t (hrs)=		0.	03		0.02						
Channel Flow 1											
Length (ft)=						24	.00				
Slope (ft/ft)=					0.005						
Cross Sectional Flow Area (ft ²)=						0.	44				
Wetted Perimeter (ft)=							36				
Channel Lining:						Concrete	, finished				
n-value=						0.0)12				
Hydraulic Radius (ft)=						0.	19				
Average Velocity (ft/sec)=						2.	87				
T _t (hrs)=						0.	00				

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		20.00
Slope (ft/ft)=		0.050
Cross Sectional Flow Area (ft ²)=		1.23
Wetted Perimeter (ft)=		3.93
Channel Lining:		Concrete, finished
n-value=		0.012
Hydraulic Radius (ft)=		0.31
		12.80
Average Velocity (ft/sec)= T _t (hrs)=		0.00
Channel Flow 3		0.00
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)= Channel Lining:		
-		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T_t (hrs)=		
Tc (hrs)=	0.37	0.37
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number	E0	60
Composite Curve Number=	58	60
Disconnected Impervious Adjustment	58	60
Disconnected Impervious Adjustment Disconnected impervious area (acre) =		
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		60 0
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only		
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	6	
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	6	0
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	6	0
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	6	0 2
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	6 7 0.23	0 2 0.29
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	6 7 0.23	0 2 0.29
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	6 7 0.23 640	0 2 0.29 325
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} =	6 7 0.23 640	0 2 0.29 325
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	6 0.23 640 0.080	0 2 0.29 325 0.052
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	6 0.23 640 0.080 0.44	0 2 0.29 325 0.052 0.52
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	6 0.23 640 0.080 0.44 1,227	0 2 0.29 325 0.052 0.52 591
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} =	6 0.23 640 0.080 0.44 1,227	0 2 0.29 325 0.052 0.52 591
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{2-year} = 10-year, 24-hour storm (DIA)	6 0.23 640 0.080 0.44 1,227 0.153	0 2 0.29 325 0.052 0.52 591 0.095

DA SITE SUMMARY STORMWATER PRE-POST CALCULATIONS

		SITE	SUMMAR	(
DRAINAGE AREA SUMMARIES											
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
Pupoff (in) = 0	Pre-Dev 0.20	0.23	(1-year, 24-	hour stor	m)	1	1	1	1		
Runoff (in) = Q _{pre,1-year} =	0.20	0.23									
Peak Flow (cfs)=Q _{1-year} =			: (1-year, 24	-hour stor	(m)				I		
Drangood Impositious Surface (care)		1	. (1-year, 24	-nour stor	111)	1	1	1	1		
Proposed Impervious Surface (acre) =	1.77	0.00									
Runoff (in)=Q _{1-year} =	1.35	0.29									
Peak Flow (cfs)=Q _{1-year} =	7.323	0.052									
Increase in volume per DA (ft ³)_1-yr storm= Minimum Volume to be Managed for DA	12,133				-	-	-	-			
HIGH DENSITY REQUIREMENT = (ft ³) =	6,349	72									
TARGET CURVE NUMBER (TCN)											
		Si	ite Data								
	:	SITE \SOIL	COMPOSI	TION							
HYDROLOGIC SOIL GRO	UP			Site	Area		%		Target CN	l	
А				0.	00	0	1%		N/A		
В				3.	18	10	0%		N/A		
C				0.	00	0	1%		N/A		
D				0.	00	C	1%		N/A		
		То	tal Site Area	(acres) =			3	.18			
Percent E	BUA (Include	es Existing	Lakes/Pond	Areas) =			5	6%			
		Project Density = High									
		Target Curve Number (TCN) =				N/A					
		CN _{adjusted (1-year)} =					81				
Minimum Volume to be Mana	ged (Total S	Site) Per T					Ν	I/A			
	5	Site Nitrog	en Loading	Data							
			TN export			Site			N		
HSG			coefficient (lbs/ac/yr)		Acreage			Export			
Pasture			1.2		0.00			0.00			
Woods, Poor Condition			1.6		0.00			0.00			
Woods, Fair Condition			1.2			0.00			0.00		
Woods, Good Condition			0.8			0.28			0.23		
Open Space, Poor Condition			1.0			0.00			0.00		
Open Space, Fair Condition		1	0.8		1	0.00		1	0.00		
Open Space, Good Condition		1	0.6		1	1.12		1	0.67		
Reforestation (in dedicated OS)		1	0.6		1	0.00		1	0.00		
Impervious			21.2		1	1.77		1	37.55		
SITE NITROGEN LOADING RATE	(lbs/ac/yr)=				1	12.10					
Nitrogen Lo						38.45					
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_We	ndell Only=					27.01					
		n Loading	Data For E	xpansion	s Only						
		-	Existing					New			
Impervious(acres)=			NA					NA			
"Expansion Area" (acres=)						1					
			NA			NA					
Nitrogen Load (lbs/yr)=			NA			NA NA					
SITE NITROGEN LOADING RATE (lbs/ac/vr)=											
SITE NITROGEN LOADING RATE (lbs/ac/yr)= Total Site loading rate (lbs/ac/yr)			INA					10,			

7-Eleven Zebulon

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES AN	ID ADJUSTMENTS										
DA1 Site Acreage=				2.87	,						
DA1 Off-Site Acreage=				0.29							
Total Required Storage Volume for Site				N/A							
TCN Requirement (ft ³)=				11/4							
Total Required Storage Volume for DA1 1" Rainfall for High Density (ft ³)=				6,34	9			1			
Will site use underground detention/cistern?	No	Enter %	of the year	water will be reused=		0%				nation/details should be te water usage.	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA				1						
	HSG		DA1(a) ac) Off-site	Sub-E (A Site	DA1(b) (c) Off-site		DA1(c) (c) Off-site		DA1(d) Ac) Off-site		DA1(e) Ac) Off-site
Pasture		One	Off Site	One	On site	One	Off Site	One	On site	One	Off Sile
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition		0.22									
Open Space, Poor Condition		-									
Open Space, Fair Condition											
Open Space, Good Condition		0.88									
Reforestation (in dedicated OS)		0.00									
Impervious		1.77									
Sub-DA1(a) BMP(s)		1.77									
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)			Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
Stormwater Wetland	Stormwater Wetlands							40%	38.19	15.27	65.33
								0%	22.91	0.00	
			6,296		11,948			0%	22.91	0.00	
								0%	22.91	0.00	
								0%	22.91	0.00	
То	tal Nitrogen remaining leaving the subbasin (lbs):				1	22	.91				
Sub-DA1(b) BMP(s)											
enter	If Sub-DA1(b) is connected to upstream subbasin(s), the nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided olume that v wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
То	tal Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
enter	If Sub-DA1(c) is connected to upstream subbasin(s), the nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided olume that v wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
То	tal Nitrogen remaining leaving the subbasin (lbs):										

7-Eleven Zebulon

DRAINAGE AREA 1 BMP CALCULATIONS

NORTH CAROLINA							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
То	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft^3)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
To	tal Nitrogen remaining leaving the subbasin (lbs):	A1 BMP SUMMARY					
	Total Volume Treated (ft ³)=	AT DWF SOWIWART	11,948				
	Nitrogen Mitigated(Ibs)=		15.27				
1-year, 24-hour storm	- Anogor Anagaros(180)-		10.21				
	Post BMP Volume of Runoff (ft ³) _(1-year) =		2,102				
	Post BMP Runoff (inches) = Q*(1-year)=		0.20				
	Post BMP CN _(1-year) =		56				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		0.198				
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =		7,324				
	Post BMP Runoff (inches) = $Q^*_{(2-year)}$ =		0.70				
	Post BMP CN _(2-year) =		64				
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		0.475				
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =		19,814				
	Post BMP Runoff (inches) = Q* _(10-year) =		1.90				
	Post BMP CN(10-year)=		84				
	Post BMP Peak Discharge (cfs)= Q _(10-year) =		2.697				

7-Eleven Zebulon

DRAINAGE AREA 2 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES AN	ID ADJUSTMENTS										
DA2 Site Acreage=				0.31							
DA2 Off-Site Acreage=				0.03							
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)=				11/7							
Total Required Storage Volume for DA2 1" Rainfall for High Density (ft3)=				72							
Will site use underground detention/cistern?	No	Enter %	of the year	water will be reused=		0%				ation/details te water usag	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	HSG	(4	DA2(a) Ac)	(A	DA2(b) (c)	(4	DA2(c) Ac)	(A	DA2(d) (c)	(A	DA2(e) Ac)
Pasture		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition		0.06									
Open Space, Poor Condition		0.00									
Open Space, Fair Condition											
Open Space, Fair Condition Open Space, Good Condition		0.25									
Reforestation (in dedicated OS)		0.25									
Impervious		0.00									
Sub-DA1(a) BMP(s)		0.00									
						Provided		1	1		
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			olume that with the second sec		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdow Time (hours)
	Stormwater Wetlands							40%	0.27	0.11	50
		İ						0%	0.16	0.00	
		İ	67					0%	0.16	0.00	
								0%	0.16	0.00	
								0%	0.16	0.00	
Το	tal Nitrogen remaining leaving the subbasin (lbs):					0	.16		1	1	
Sub-DA1(b) BMP(s)											
enter	If Sub-DA1(b) is connected to upstream subbasin(s), the nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided olume that w wdown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdowr Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Το	tal Nitrogen remaining leaving the subbasin (lbs):				1						1
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), the nitrogen leaving the most upstream subbasin(lbs):										
						Den 11:1		1			
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided olume that wdown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdow Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
		I						0%	0.00	0.00	
								0%	0.00	0.00	
		t						0%	0.00	0.00	
То	tal Nitrogen remaining leaving the subbasin (lbs):										
		-	-	-	-					-	

7-Eleven Zebulon

DRAINAGE AREA 2 BMP CALCULATIONS

NORTH CAROLINA							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subb	basin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
	tal Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subb	basin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
To	tal Nitrogen remaining leaving the subbasin (lbs):	A2 BMP SUMMARY					
	Total Volume Treated (ft ³)=	AZ BINF SUNIMART					
	Nitrogen Mitigated (Ibs)=		0.11				
1-year, 24-hour storm	·····g-····g-····(·-·,						
	Post BMP Volume of Runoff (ft ³) _(1-year) =		325				
	Post BMP Runoff (inches) = Q*(1-year)=		0.29				
	Post BMP CN _(1-year) =		60				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		0.065				
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =		591				
	Post BMP Runoff (inches) = $Q^*_{(2-year)}$ =		0.52				
	Post BMP CN _(2-year) =		60				
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		0.111				
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =		3,884				
	Post BMP Runoff (inches) = $Q^*_{(10-year)}$ =		3.44				
	Post BMP CN(10-year)=		98				
	Post BMP Peak Discharge (cfs)= $Q_{(10-year)}$ =		0.277				

7-Eleven Zebulon

DA SITE SUMMARY BMP CALCULATIONS

	BN		IARY							
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-	Developm	ent (1-yea	r, 24-hour s	torm)						
Runoff (in)=Q* _{1-year} =	0.20	0.23								
Peak Flow (cfs)=Q _{1-year} =	= 0.272 0.080									
Post-Development (1-year, 24-hour storm)										
Target Curve Number (TCN) =					NA	١				
Post BMP Runoff (inches) = Q* _(1-year) =	0.20	0.29								
Post BMP Peak Discharge (cfs)= Q _{1-year} =	0.198	0.065								
Post BMP CN _(1-year) =					56					
	Post-BN	IP Nitroge	n Loading							
TOTAL SITE NITROGEN MITIGATED (lbs)=					15.3	38				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=					7.2	6				
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					11.6	3				

7-Eleven Zebulon

LOW IMPACT DEVELOPMENT SUMMARY

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
DRAINAGE AREA.	DAT	DAZ	Pre-Develo		DAS	DAO	DAT	DAO	DA9	DATO
Duraff (in)	0.40	0.44	Fie-Deven	Spinein	1	1	[1	
Runoff (in) = Q _{pre_2-year} =	0.40	0.44								
Total Runoff Volume (ft ³)=	3,802	1,227		1	1					
Peak Flow (cfs)=Q _{2-year} =	0.540	0.153								
			Post-Devel	opment						
2-year, 24-hour storm (LID)		1	1	1	1	1	1	1	1	1
Post BMP Runoff (inches) = Q* _(2-year) =	0.70	0.52								
Post BMP Peak Discharge (cfs)= Q _(2-year) =	0.475	0.111								
Post BMP Volume of Runoff (ft3) _(2-year) =	7,324	591								
Does Runoff meet LID requirements?	No	No								
Does Peak Flow meet LID requirements?	Yes	Yes								
Does Runoff Volume meet LID requirements?	No	Yes								
ITE SUMMARY										
			Site D	ata						
Target CN =					N	I/A				
Post-Development CN =					6	64				
Does CN meet LID requirements?										
·			LID CHEC	-VI IST						
Cor	nplete the b	below chec	klist if all rec		have been	met above:				
	e areas, pre	eservation	of steep slo					buildings, ro g soils and o		
	e areas, pro	eservation	of steep slo							
ID Techniques (check all that apply)				pes, and pr						
ID Techniques (check all that apply) It least one of the following techniques must be u		ieve LID cl		pes, and pr						
ID Techniques (check all that apply) It least one of the following techniques must be u	ised to ach	ieve LID cl		pes, and pr						
ID Techniques (check all that apply) It least one of the following techniques must be u	used to ach Bioretentio On-site infi	ieve LID cla n Itration	assification:	pes, and pr						
ID Techniques (check all that apply) t least one of the following techniques must be u dditional LID Techniques (check all that apply t least two (one for Wendell) of the following te	ised to ach Bioretentio On-site infi ()	ieve LID cla n Itration	assification:	es, and pr	fication:	of naturally v	well drainin	g soils and d		
ID Techniques (check all that apply) t least one of the following techniques must be u dditional LID Techniques (check all that apply t least two (one for Wendell) of the following techniques	ised to ach Bioretentio On-site infi Chniques m Retention o	ieve LID cla n Itration iust be use of 50% of v	assification: d to achieve egetated are	e LID classi ea, includin	fication: g open spar	ce, landscap	well drainin	g soils and d	other hydro	
ID Techniques (check all that apply) It least one of the following techniques must be u udditional LID Techniques (check all that apply t least two (one for Wendell) of the following techniques	ised to ach Bioretentio On-site infi chniques m Retention o Use of pern	ieve LID cla n Itration iust be use of 50% of v meable pay	assification: d to achieve egetated are vement for <u>a</u>	e LID classif ea, including ea, including	fication: g open spar iveways, pr	ce, landscap ivate roads,	well drainin	g soils and d	other hydro	
ID Techniques (check all that apply) It least one of the following techniques must be u dditional LID Techniques (check all that apply t least two (one for Wendell) of the following techniques	ised to ach Bioretentio On-site infi chniques m Retention o Use of pern	ieve LID cla n Itration iust be use of 50% of v meable pay	assification: d to achieve egetated are	e LID classif ea, including ea, including	fication: g open spar iveways, pr	ce, landscap ivate roads,	well drainin	g soils and d	other hydro	
ID Techniques (check all that apply) It least one of the following techniques must be u Additional LID Techniques (check all that apply) t least two (one for Wendell) of the following techniques additional LID Techniques (check all that apply) t least two (one for Wendell) of the following techniques additional LID Techniques (check all that apply) t least two (one for Wendell) of the following techniques additional LID Techniques (check all that apply) t least two (one for Wendell) of the following techniques additional LID Techniques (check all that apply) t least two (one for Wendell) of the following techniques additional LID Techniques (check all that apply) t least two (one for Wendell) of the following techniques additional LID Techniques (check all that apply) t least two (one for Wendell) of the following techniques additional LID Techniques (check all that apply) additional LID Techniques (check all that ap	ised to ach Bioretentio On-site infi chniques m Retention o Use of pern	ieve LID cl n Itration iust be use of 50% of v meable pav of one rain	assification: d to achieve egetated are vement for <u>a</u> n cistern per	e LID classif ea, including ea, including	fication: g open spar iveways, pr	ce, landscap ivate roads,	well drainin	g soils and d	other hydro	
ID Techniques (check all that apply) It least one of the following techniques must be u udditional LID Techniques (check all that apply t least two (one for Wendell) of the following techniques 	Ised to ach Bioretentio On-site infi Chniques m Retention of Use of perri Installation	ieve LID cla n Itration iust be use of 50% of v meable pay of one rain of vegetati	assification: d to achieve egetated and vement for <u>a</u> n cistern per ive roofs	e LID classif ea, includin lot or three	fication: g open spar iveways, pr rain barrels	ce, landscap ivate roads, s per lot	bing or fore sidewalks	g soils and d	areas	
ID Techniques (check all that apply) It least one of the following techniques must be u Additional LID Techniques (check all that apply) It least two (one for Wendell) of the following techniques ID Techniques (check all that apply) ID Techniques (check a	used to ach Bioretentio On-site infi Chniques m Retention of Use of perr Installation Installation Increasing	ieve LID cli n ltration nust be use of 50% of v meable pav of one rair of vegetati all buffers	assification: d to achieve egetated and vement for <u>a</u> n cistern per ive roofs	e LID classif ea, includin lot or three ian buffer zo	fication: g open spar iveways, pr rain barrels	ce, landscap ivate roads, s per lot	bing or fore sidewalks	g soils and d	areas	
Additional LID Techniques (check all that apply At least two (one for Wendell) of the following technology 	Ised to ach Bioretentio On-site infi Phiniques m Retention of Use of perr Installation Installation Installation Increasing Use of rect	ieve LID cla n Itration ust be use of 50% of v meable pay of one rain of vegetati all buffers aimed wate	assification: d to achieve egetated are rement for <u>a</u> n cistern per ive roofs in the Ripari	e LID classi ea, includin lot or three ian buffer zo dings	fication: g open spar rain barrels	ce, landscap ivate roads, s per lot	bing or fore sidewalks	g soils and d	areas	

7-Eleven Zebulon

DOWNSTREAM IMPACT ANALYSIS SITE SUMMARY

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development										
Peak Discharge (cfs)=Q _{10-year} =	1.59	0.43								
Volume of Runoff (ft ³) _(10-year) =	11,206	3,482								
			Post-Devel	opment						
10-year, 24-hour storm (DIA)										
Post BMP Peak Discharge (cfs)= Q _(10-year) =	2.70	0.28								
Post BMP Volume of Runoff (ft ³) _(10-year) =	19,814	3,884								

1106 N Arendell Ave, Zebulon, NC Bowman North Carolina, Ltd.

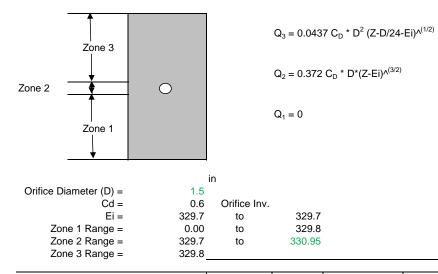
			er Calculation (Conditions (Stormwate)	
<u>Drainage Area (acres</u>	<u>):</u>	0.13				
Existing Soil Groups:	<u>Soil Group</u> B	<u>Map Symbol</u> WeB	<u>Soil Description</u> Wedowee Sandy L	_	<u>Acres</u> 0.13	Percent of DA 100%
Existing Land Uses:	<u>Land U</u> Open Space - Impervious Ar		<u>Existing Soil Group</u> B	<u>Acres</u> 0.09 0.04	<u>Curve #</u> 61 98	<u>Weighted CN</u> 41.1 32.0
				Cumulati	ive Curve # =	73.1

1106 N Arendell Ave, Zebulon, NC Bowman North Carolina, Ltd.

	C		er Calculation Conditions (On-Site Byp			
<u>Drainage Area (acres</u>	<u>):</u>	0.0034				
Existing Soil Groups:	<u>Soil Group</u> B	<u>Map Symbol</u> WeB	<u>Soil Descriptio</u> Wedowee Sandy L	-	<u>Acres</u> 0.00	Percent of DA 100%
<u>Existing Land Uses:</u>	Land U Impervious Ar	l <u>se Description</u> rea	Existing Soil Group	<u>Acres</u> 0.00	<u>Curve #</u> 98	<u>Weighted CN</u> 98.0
				Cumulati	ve Curve # =	98.0

Proposed Stormwater Wetland

Project Information					
Project Name:	7-Eleven (2	Zebulon))		
Project #:	220163-01	-002			
Designed by:	MCB	Date:	9/27/2023		
Revised by:	MCB	Date:	12/4/2023		
Checked by:		Date:			
Site Information					
Sub Area Location:	Drainage T	To Propose	ed Stormwater Wetland	1	
Drainage Area (DA) =	3.16	Acres	137,464	sf	
Impervious Area (IA) =	1.91	Acres	83,063	sf	
Percent Impervious (I) =		,	60.43	%	
()					
Required WQv Storage Volume					
Design Storm =	1	inch	(Non-Coastal cou	ntv)	
Determine Rv Value =			0.594	in/in	
Storage Volume Required =	6,802	.,	ve Permanent Po		
Surface Area Requirements:	0.000			D.	
Storage Volume Required =	6,802		ove Permanent Po	01)	
Maximum ponding depth =	1.25	ft			
Surface Area Required=	5,442	sf			
Surface Area Provided=	8130	sf			
Breakdown of Surface Area:					
Forebay	1200.00	sf			
	14.8%	-	tland Surface Are	a (10-15%)	
Non-Forebay Deep Pools	1020.00	sf			
, i	12.5%		tland Surface Are	a (5% to 15%)	
	12.0/0				
	12.070				
Shallow Water (low marsh)	3490.00				
Shallow Water (low marsh)		sf	tland Surface Are		
Shallow Water (low marsh)	3490.00	sf			
Shallow Water (low marsh) Shallow Land (high marsh)	3490.00	sf of We			
	3490.00 42.9%	sf of We sf		a (35% to 45%)	
	3490.00 42.9% 2620.00	sf of We sf	tland Surface Are	a (35% to 45%)	
	3490.00 42.9% 2620.00	sf of We sf	tland Surface Are	a (35% to 45%)	


STORMWATER WETLAND **INCREMENTAL DRAWDOWN METHOD-Water Quality Volume**

Project Information

Project Name:	7-Eleven (Z	ebulon)	
Project #:	220163-01-	002	
Designed by:	MCB	Date:	9/27/202
Revised by:	MCB	Date:	12/4/202
Checked by:		Date:	

Water Quality Orifice

* Incremental Determination of Water Quality Volume Drawdown Time

Increment	al Drawdov	vn Method		Stage, Z	Zone	Q	Drawdown Time
	Countour	Contour	Incremental				
	Countour	Area	Volume	ft		cfs	min
		sq ft	cu ft	0.00	0.00	0.000	
	329.70	8,130	0	0.30	3.00	0.029	1,488
	330.00	8,980	2,566	1.25	3.00	0.064	2,432
	330.95	10,770	9,381				
							3,920
	Total		11,947				

Drawdown Time = Incremental Volume / Q / 60sec/min

Summary

initial y	cf
Total Volume =	11,947 min
Total Time =	3,920 days
Total Time =	2.72

Proposed Stormwater Wetland

Anti-Floatation Calculations for OCS

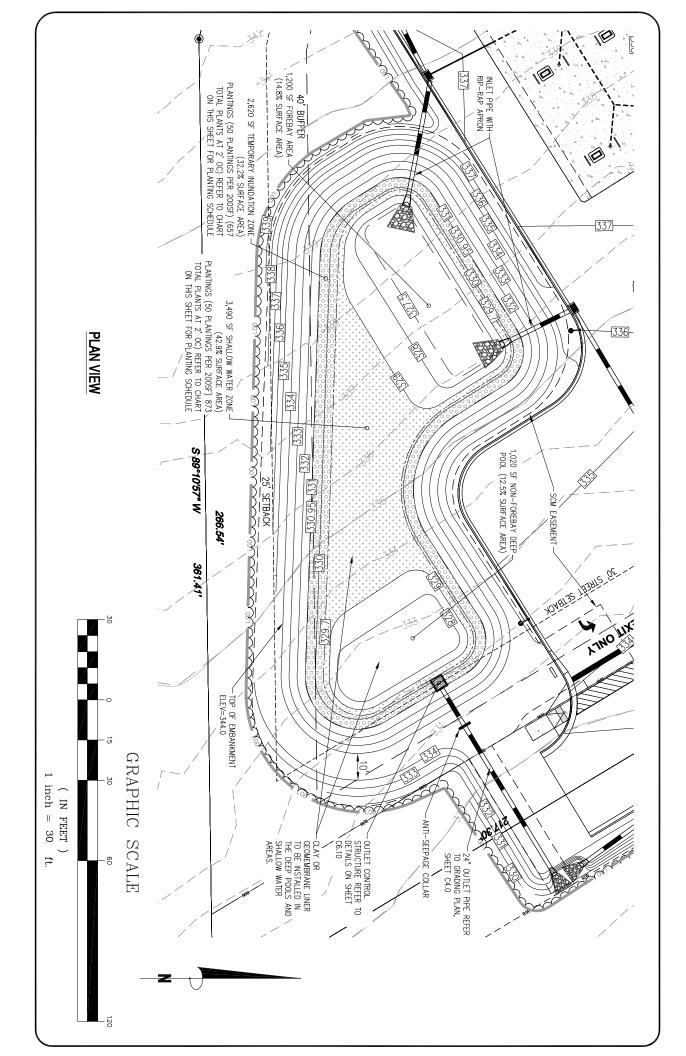
Project Information

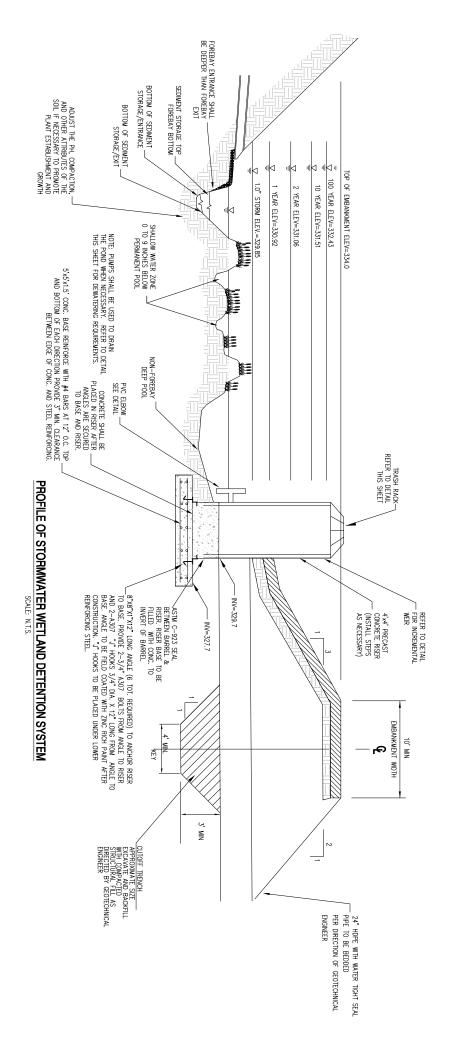
Project Name:	7-Eleven (Ze	ebulon)	
Project #:	220163-01-0	02	
Designed by:	MCB	Date:	9/27/2023
Revised by:	MCB	Date:	12/4/2023
Checked by:		Date:	

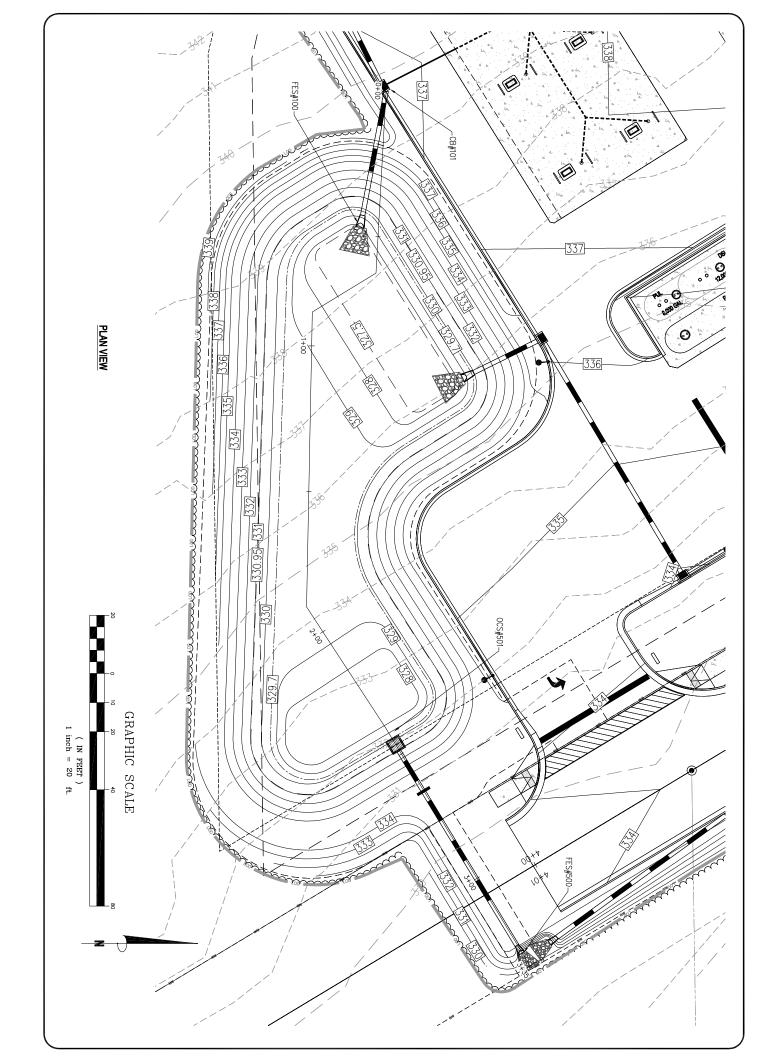
Site Information

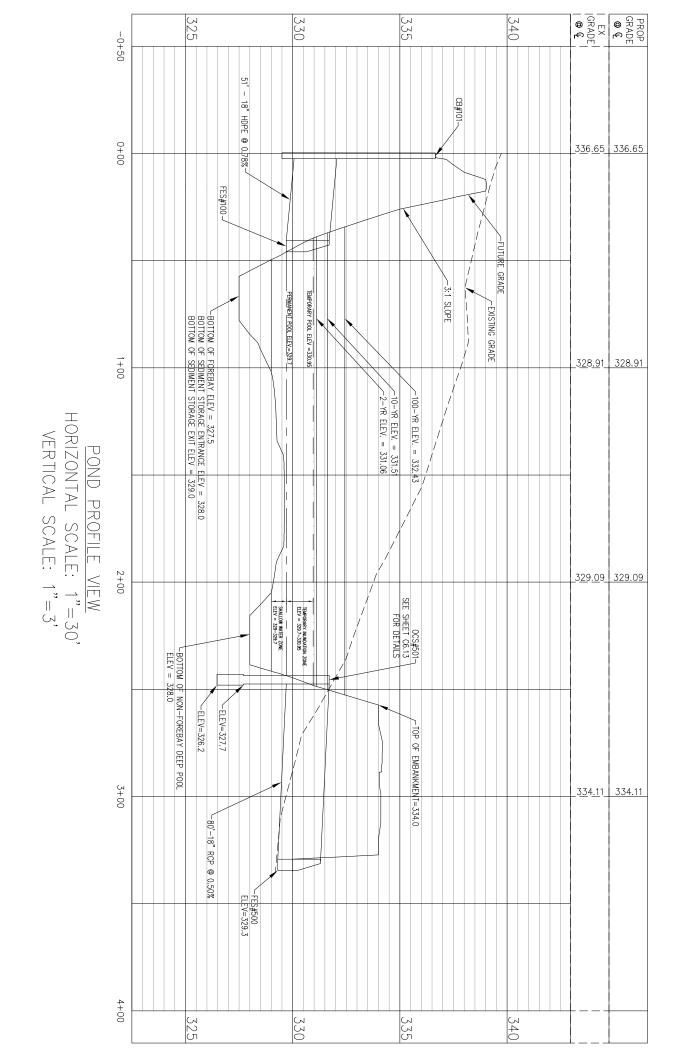
Sub Area Location:	Drainage to	Proposed Stormwater Wetland
Drainage Area (DA) =	3.16	Acres
Impervious Area (IA) =	1.91	Acres
Percent Impervious (I) =	60.43	% (Drainage Area)

Anti-Flotation Device


4' x 4' Outlet Structure

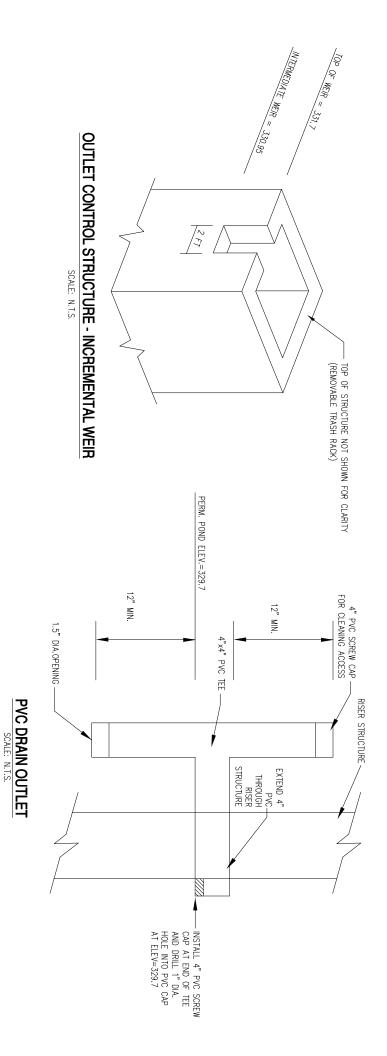

4' x 4' Outlet Structure			
Area:	16.0	_sf	
Volume:	64.0	cf	
Weight:	3994	lbs	
Factor of Safety	1.20		
WT Req'd of Anti-Flotation Device:	4792	lbs	
Volume of Concrete Req'd:	31.9	cf	
Volume Provided:	69.5	cf	

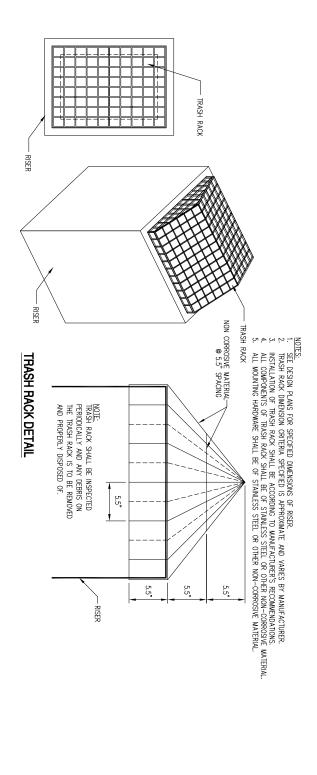

(Water Displaced - Top of Pond to Bottom of Pond)

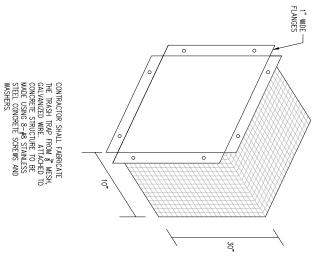

(Unit WT of Concrete = 150 pcf)

(4'x4' riser x 2.0' = 32.0cf, 5'x5' footing x 1.5' = 37.5cf)

STAGE/STORAGE TABLE


STAGE (FT)	STAGE (FT) ELEVATION (FT)		INCREMENTAL STORAGE (CF)	TOTAL STORAGE (CF)
0.0	329.7	8,130	0	0
0.3	330.0	8,980	2,566	2,566
1.25	330.95	10,770	9,381	11,948 (WQV)
1.3	331.0	10,840	540	12,488
2.3	332.0	12,400	11,620	24,108
3.3	333.0	14,010	13,205	37,313
4.3	334.0	15,680	14,845	52,158


STORMWATER M	ANAGEMENT DESIGN	STORMWATER	R WETLAND:			
RIVER BASIN: RECEIVING STREAM: STREAM INDEX: STREAM CLASS: HUC: PROJECT COORDINATES:	NEUSE MOCCASIN CREEK 27-86-2-4 C;NSW 03020203 35.836261N, -78.321664W					
POND DESIGN SUMMARY DRAINAGE AREA TO POND			ACRES			
SITE IMPERVIOUS AREA TO <u>OFF-SITE DESIGN IMPERVI</u> TOTAL DESIGN IMPERVIOUS	1.77 ACRES 0.14 ACRES 1.91 ACRES					
TOTAL DESIGN IMPERVIOU	PRE-DEVELOPED		POST-DEVELOPED POST DEVELOPED		POST DEVELOPED	
	TO POND	TO POND	THROUGH POND	POST DEVELOPED BYPASS	COMBINED	
DRAINAGE AREA: CURVE NUMBER:	3.41 AC 57	3.16 AC 83		0.13 AC 73		
TIME OF CONCENTRATION:	0,	5 MIN		10 MIN		
1.0" STORM EVENT:		0.245 CFS	0.018 CFS			
1-YEAR STORM EVENT: 2-YEAR STORM EVENT:	0.224 CFS 0.743 CFS	7.077 CFS 9.702 CFS	0.062 CFS 0.263 CFS	0.136 CFS 0.212 CFS	0.198 CFS 0.475 CFS	
10-EAR STORM EVENT: 100-YEAR STORM EVENT:	3.321 CFS 9.617 CFS	17.25 CFS 30.29 CFS	2.248 CFS 10.72 CFS	0.449 CFS 0.902 CFS	2.697 CFS 11.62 CFS	

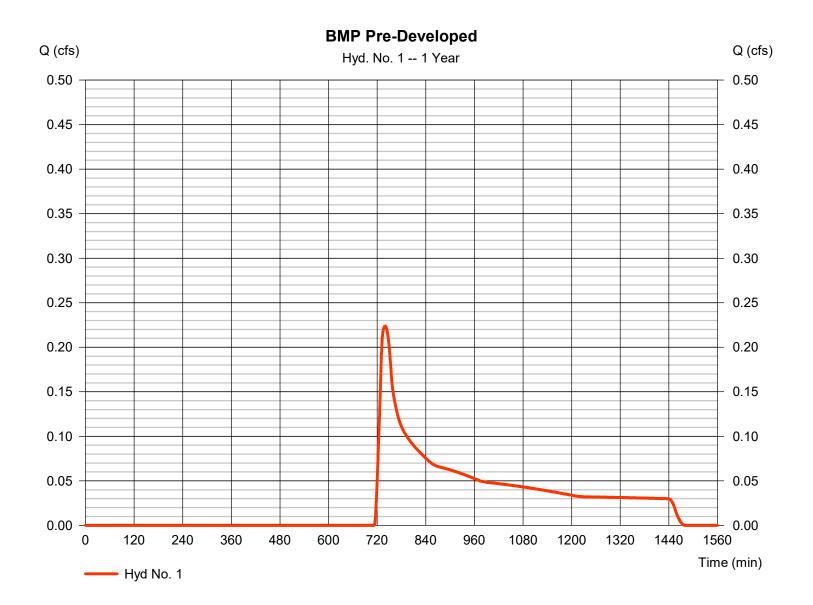

TYPICAL SHALLOW WATER PLANTING SCHEDULE										
	+ SCIENTIFIC NAME COMMON NAME PLANTING ZONE QUANTITY HEIGHT IDEAL DEPTH CONTAINER TYPE SPACING PLANTING SE									
+ + + + + + + + + + + + + + + + + + + +	Juncus effusus	Common Rush	SHALLOW WATER	291	9" FOLIAGE HEIGHT	0-2"	4" TEA POT	2' O.C.	SPRING/SUMMER	
+ + +	Lilaeopsis carolinensis	Carolina Grasswort	SHALLOW WATER	291	9" FOLIAGE HEIGHT	0-9"	4" TEA POT	2' O.C.	SPRING/SUMMER	
	Schoenoplectus tabernaemontani	Softstem Bulrush	SHALLOW WATER	291	9" FOLIAGE HEIGHT	0-6"	4" TEA POT	2' O.C.	SPRING/SUMMER	

TYPICAL TEMPORARY INUNDATION ZONE PLANTING SCHEDULE									
	SCIENTIFIC NAME	COMMON NAME	PLANTING ZONE	QUANTITY	HEIGHT	NURSERY CONTAINER TYPE	SPACING	PLANTING SEASON	
	Eutrochium dubium	Coastal Joy Pye Weed	SHALLOW LAND	219	9" FOLIAGE HEIGHT	4" TEA POT	2' O.C.	SPRING/SUMMER	
	Eupatorium erfoliatum	Boneset	SHALLOW LAND	219	9" FOLIAGE HEIGHT	4" TEA POT	2' O.C.	SPRING/SUMMER	
	Rhynchospora colorata	Starrush Whitetop	SHALLOW LAND	219	9" FOLIAGE HEIGHT	4" TEA POT	2' O.C.	SPRING/SUMMER	

PLANTINGS

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

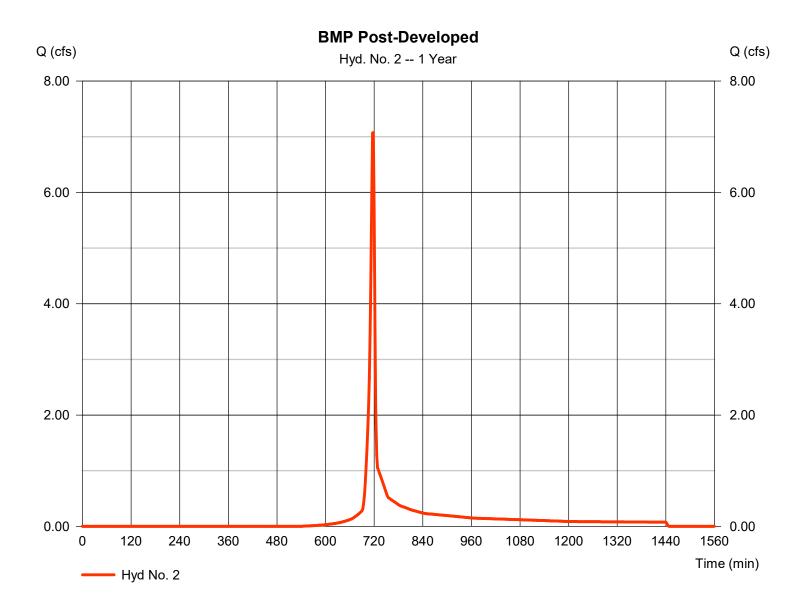

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.224	2	740	2,464				BMP Pre-Developed
2	SCS Runoff	7.077	2	718	14,268				BMP Post-Developed
3	Reservoir	0.062	2	1442	13,023	2	330.92	11,643	Post Through Detention
4	SCS Runoff	0.136	2	722	375				BMP Post-Developed Bypass
7	SCS Runoff	0.245	2	152	1,420				BMP Post-Developed
8	Reservoir	0.018	2	366	1,234	7	329.85	1,289	1.0-in Storm Thru Pond
Stormwater Wetland-(7-Eleven).gpw				Return F	Period: 1 Ye	ar	Tuesday, 1	2 / 5 / 2023	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.224 cfs
Storm frequency	= 1 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 2,464 cuft
Drainage area	= 3.410 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 24.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

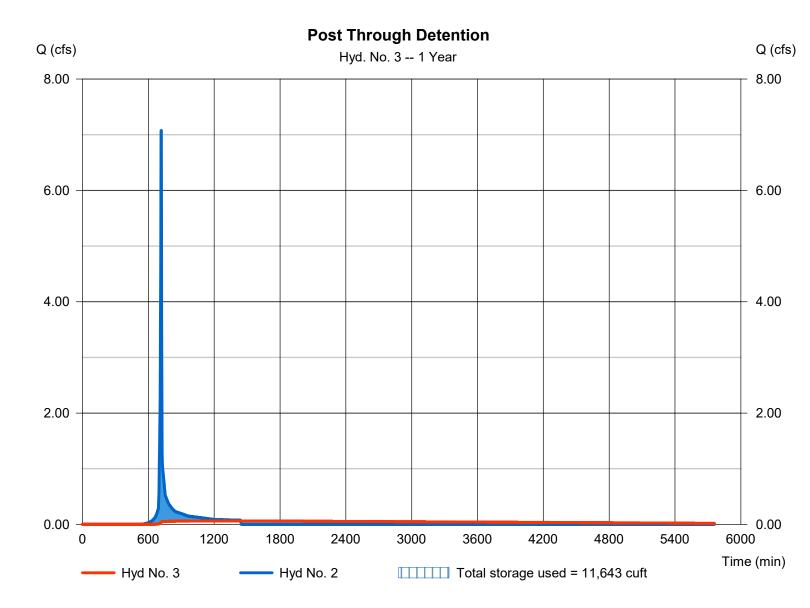
Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 7.077 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 14,268 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 12 / 5 / 2023

3


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Post Through Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.062 cfs
Storm frequency	= 1 yrs	Time to peak	= 1442 min
Time interval	= 2 min	Hyd. volume	= 13,023 cuft
Inflow hyd. No.	= 2 - BMP Post-Developed	Max. Elevation	= 330.92 ft
Reservoir name	= BMP Pond	Max. Storage	= 11,643 cuft

Storage Indication method used.

Pond Report

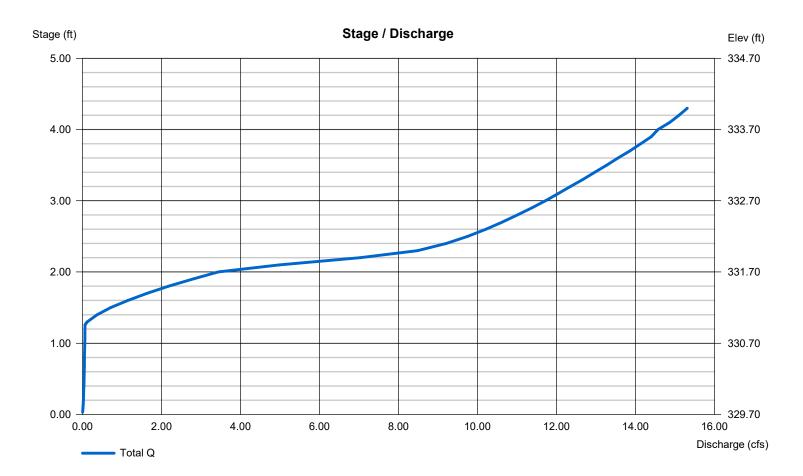
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - BMP Pond

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 329.70 ft

Stage / Storage Table

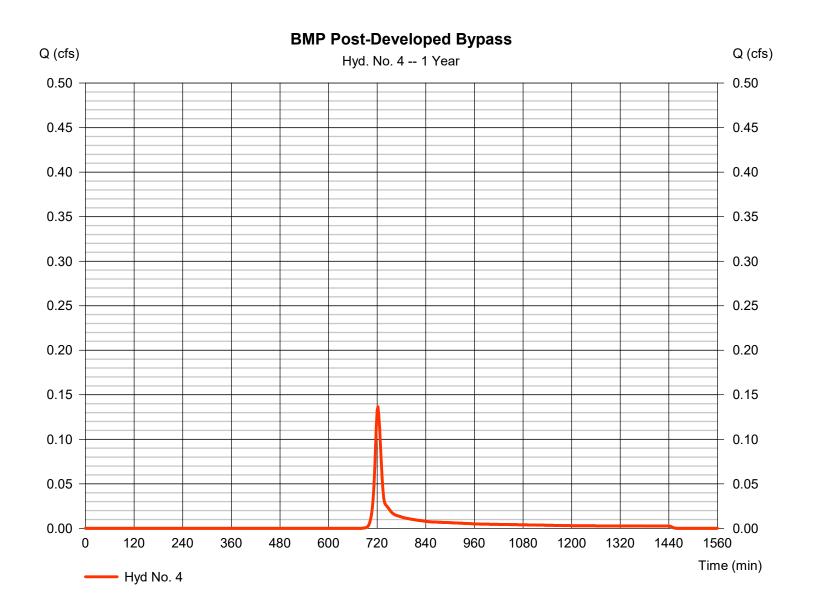

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	329.70	8,130	0	0
0.30	330.00	8,980	2,566	2,566
1.25	330.95	10,770	9,381	11,948
1.30	331.00	10,840	540	12,488
2.30	332.00	12,400	11,620	24,108
3.30	333.00	14,010	13,205	37,313
4.30	334.00	15,680	14,845	52,158

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	1.50	Inactive	0.00	Crest Len (ft)	= 2.00	14.00	Inactive	Inactive
Span (in)	= 18.00	1.50	0.00	0.00	Crest El. (ft)	= 330.95	331.70	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	2.60	3.33	3.33
Invert El. (ft)	= 329.70	329.70	330.95	0.00	Weir Type	= Rect	Broad	Rect	
Length (ft)	= 62.00	0.50	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	1.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

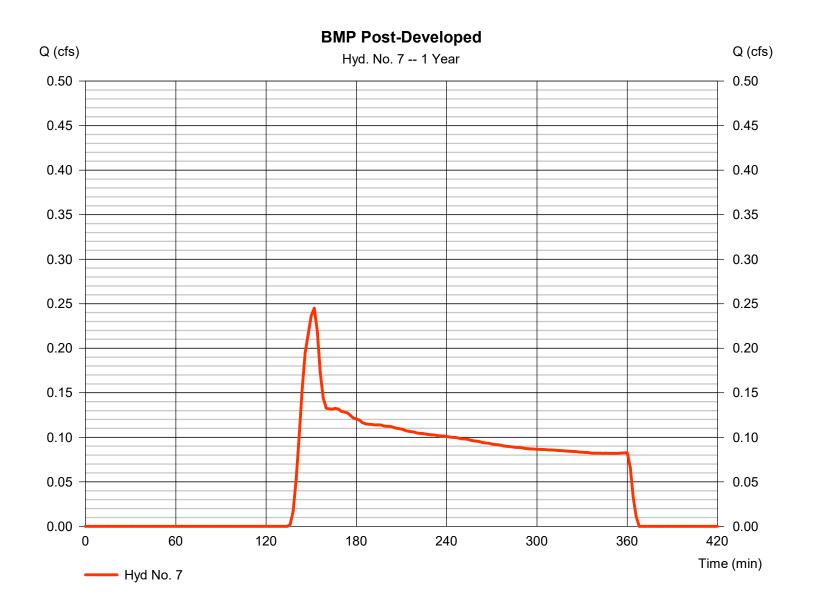

5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.136 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 375 cuft
Drainage area	= 0.130 ac	Curve number	= 73.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

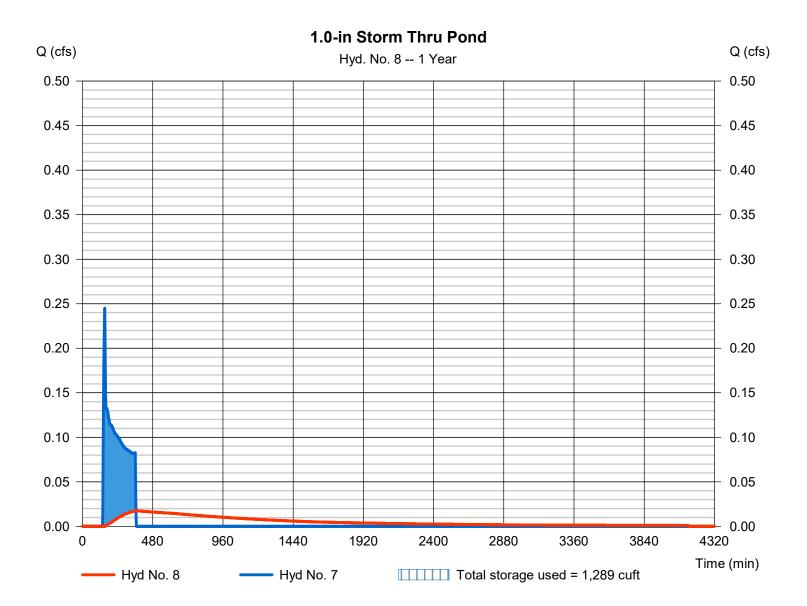

6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.245 cfs
Storm frequency	= 1 yrs	Time to peak	= 152 min
Time interval	= 2 min	Hyd. volume	= 1,420 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 1.00 in	Distribution	= SCS 6-Hr
Storm duration	= 6.00 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

1.0-in Storm Thru Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.018 cfs
Storm frequency	= 1 yrs	Time to peak	= 366 min
Time interval	= 2 min	Hyd. volume	= 1,234 cuft
Inflow hyd. No.	= 7 - BMP Post-Developed	Max. Elevation	= 329.85 ft
Reservoir name	= BMP Pond	Max. Storage	= 1,289 cuft

Storage Indication method used.

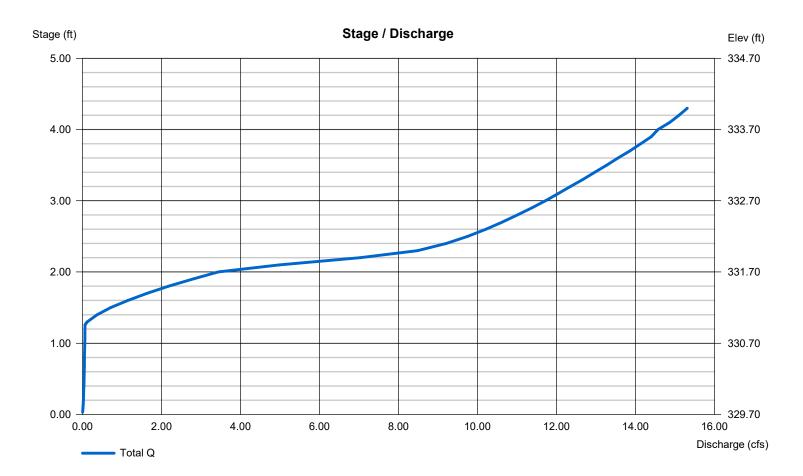
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - BMP Pond

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 329.70 ft


Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	329.70	8,130	0	0
0.30	330.00	8,980	2,566	2,566
1.25	330.95	10,770	9,381	11,948
1.30	331.00	10,840	540	12,488
2.30	332.00	12,400	11,620	24,108
3.30	333.00	14,010	13,205	37,313
4.30	334.00	15,680	14,845	52,158

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	1.50	Inactive	0.00	Crest Len (ft)	= 2.00	14.00	Inactive	Inactive
Span (in)	= 18.00	1.50	0.00	0.00	Crest El. (ft)	= 330.95	331.70	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	2.60	3.33	3.33
Invert El. (ft)	= 329.70	329.70	330.95	0.00	Weir Type	= Rect	Broad	Rect	
Length (ft)	= 62.00	0.50	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	1.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

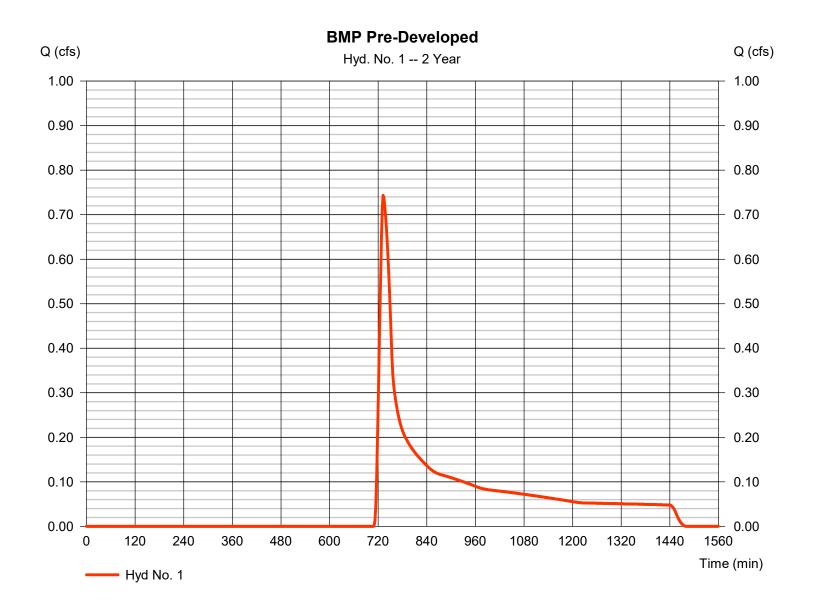
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

9

Weir Structures

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

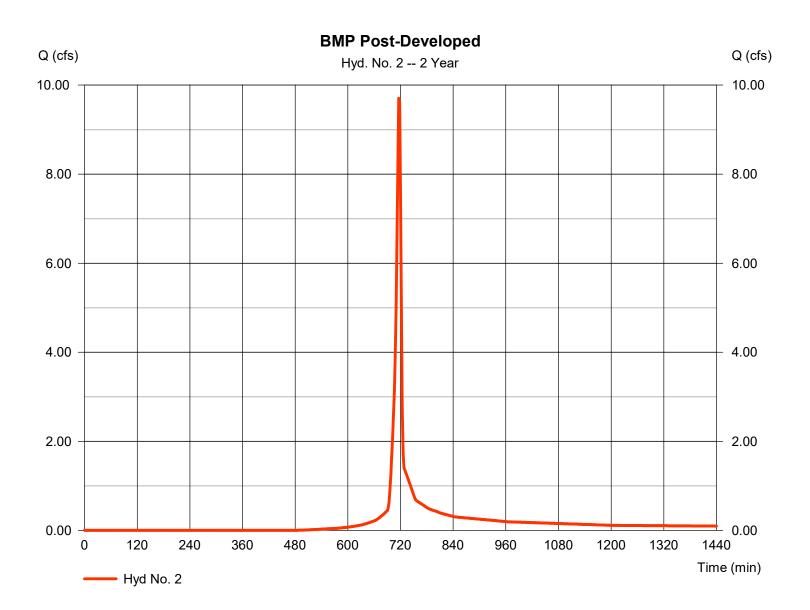

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.743	2	732	4,885				BMP Pre-Developed
2	SCS Runoff	9.702	2	716	19,625				BMP Post-Developed
3	Reservoir	0.263	2	888	18,194	2	331.06	13,164	Post Through Detention
4	SCS Runoff	0.212	2	722	564				BMP Post-Developed Bypass
7	SCS Runoff	0.000	2	n/a	0				BMP Post-Developed
8	Reservoir	0.000	2	n/a	0	7	329.70	0.000	1.0-in Storm Thru Pond
Stormwater Wetland-(7-Eleven).gpw			Return F	Period: 2 Ye	 ear	Tuesday, 1	2 / 5 / 2023		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.743 cfs
Storm frequency	= 2 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 4,885 cuft
Drainage area	= 3.410 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 24.00 min
Total precip.	= 3.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



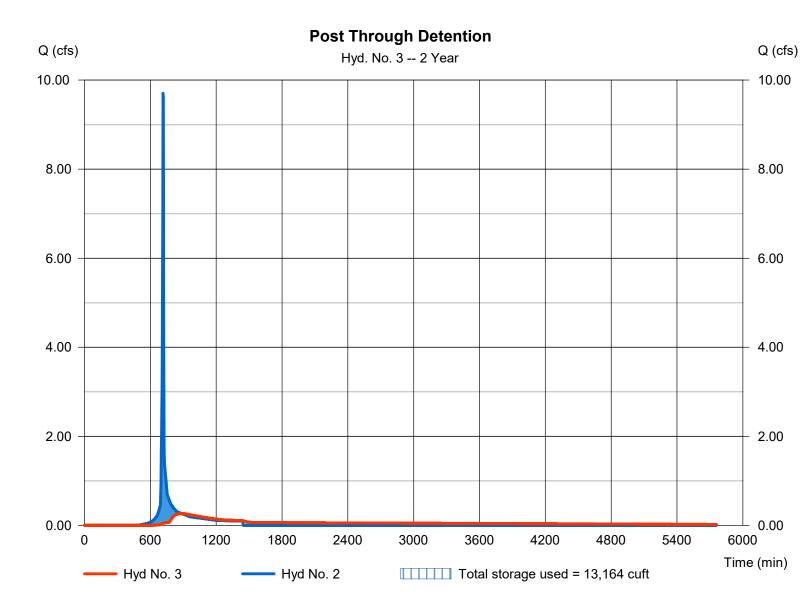
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 9.702 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 19,625 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

12

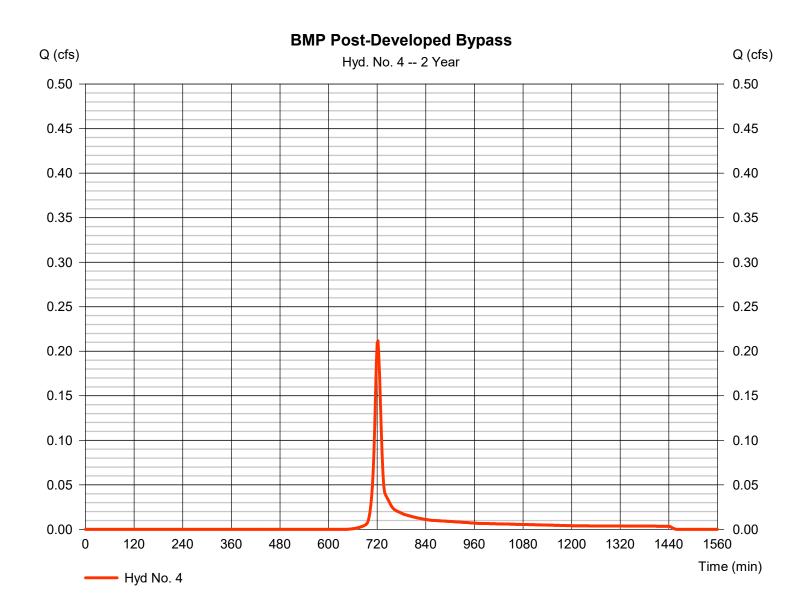

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Post Through Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.263 cfs
Storm frequency	= 2 yrs	Time to peak	= 888 min
Time interval	= 2 min	Hyd. volume	= 18,194 cuft
Inflow hyd. No.	= 2 - BMP Post-Developed	Max. Elevation	= 331.06 ft
Reservoir name	= BMP Pond	Max. Storage	= 13,164 cuft
Time interval Inflow hyd. No.	= 2 min = 2 - BMP Post-Developed	Hyd. volume Max. Elevation	= 18,194 cuft = 331.06 ft

Storage Indication method used.

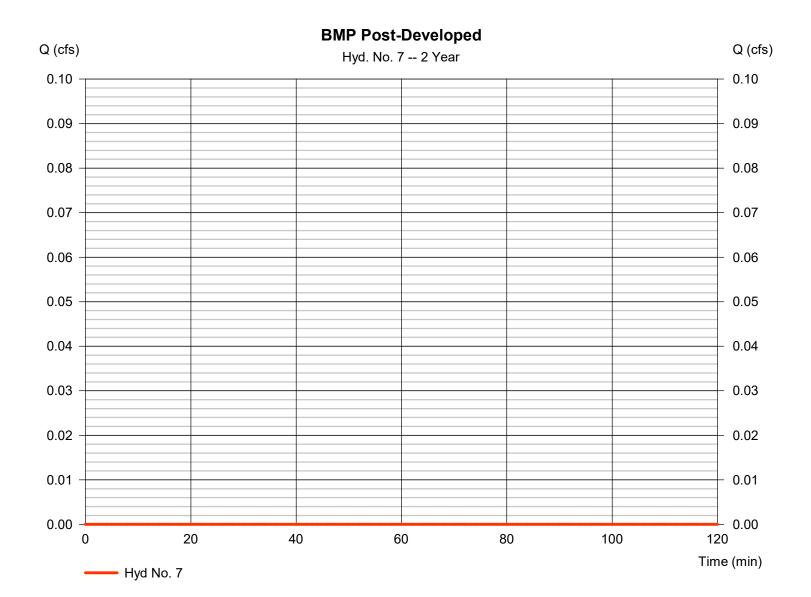


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.212 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 564 cuft
Drainage area	= 0.130 ac	Curve number	= 73.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



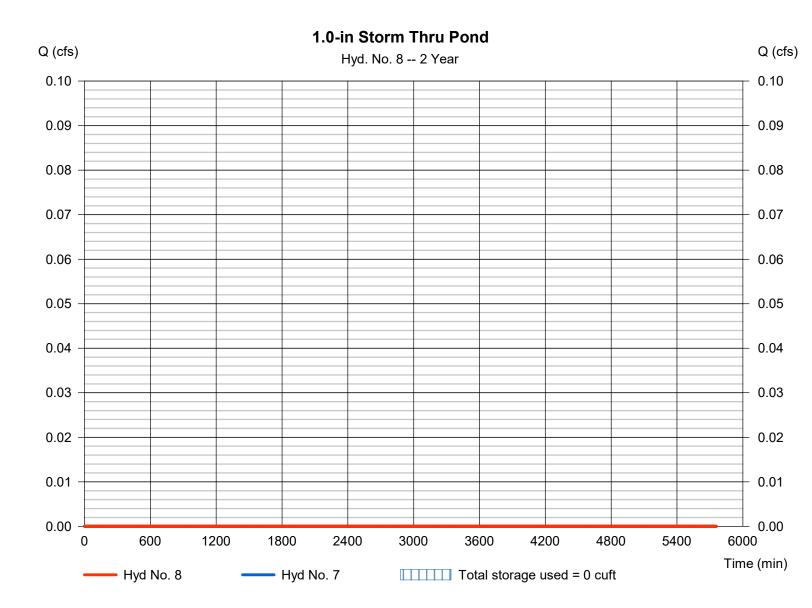
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 0.00 in	Distribution	= SCS 6-Hr
Storm duration	= 6.00 hrs	Shape factor	= 484

15


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

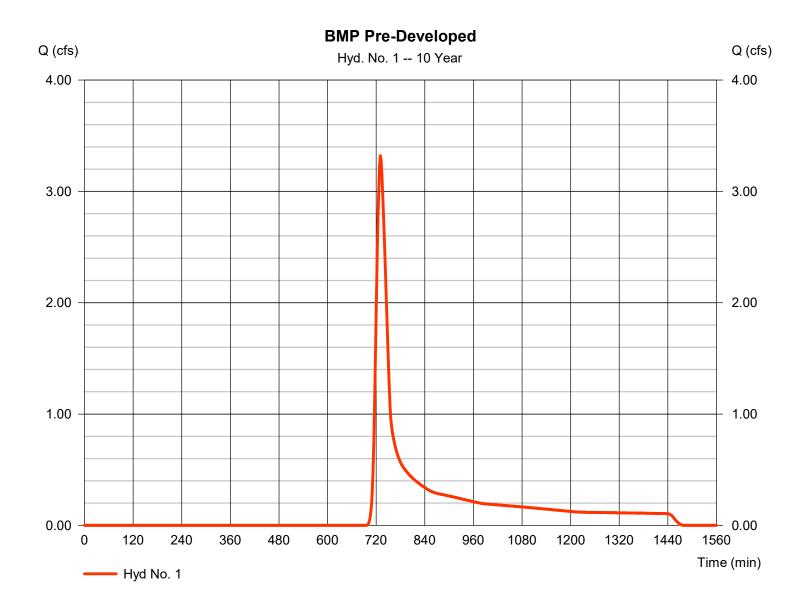
1.0-in Storm Thru Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 7 - BMP Post-Developed	Max. Elevation	= 329.70 ft
Reservoir name	= BMP Pond	Max. Storage	= 0 cuft

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

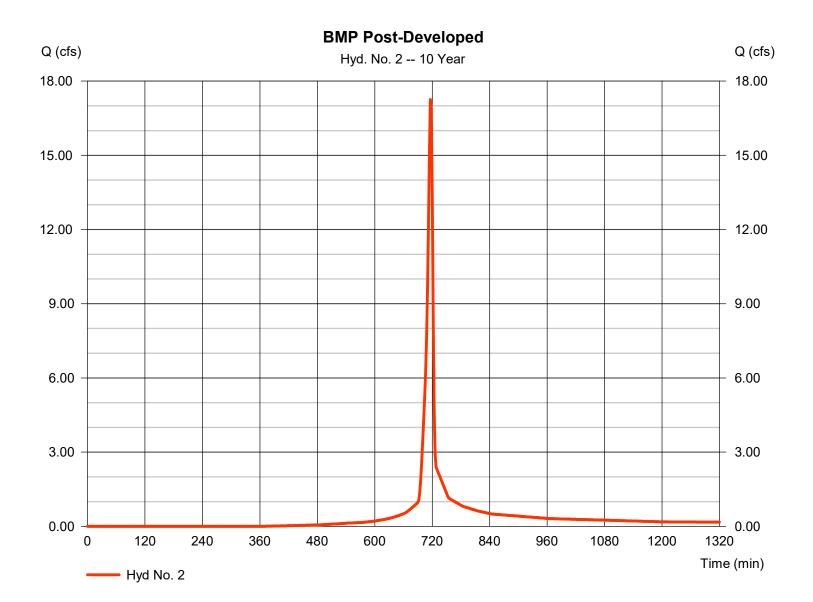

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.321	2	730	14,377				BMP Pre-Developed
2	SCS Runoff	17.25	2	716	35,499				BMP Post-Developed
3	Reservoir	2.248	2	730	34,021	2	331.51	18,422	Post Through Detention
4	SCS Runoff	0.449	2	720	1,168				BMP Post-Developed Bypass
7	SCS Runoff	0.000	2	n/a	0				BMP Post-Developed
8	Reservoir	0.000	2	n/a	0	7	329.70	0.000	1.0-in Storm Thru Pond
<u> </u>	rmwater Wet					Period: 10 \		Tuesday, 1	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 3.321 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 14,377 cuft
Drainage area	= 3.410 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 24.00 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



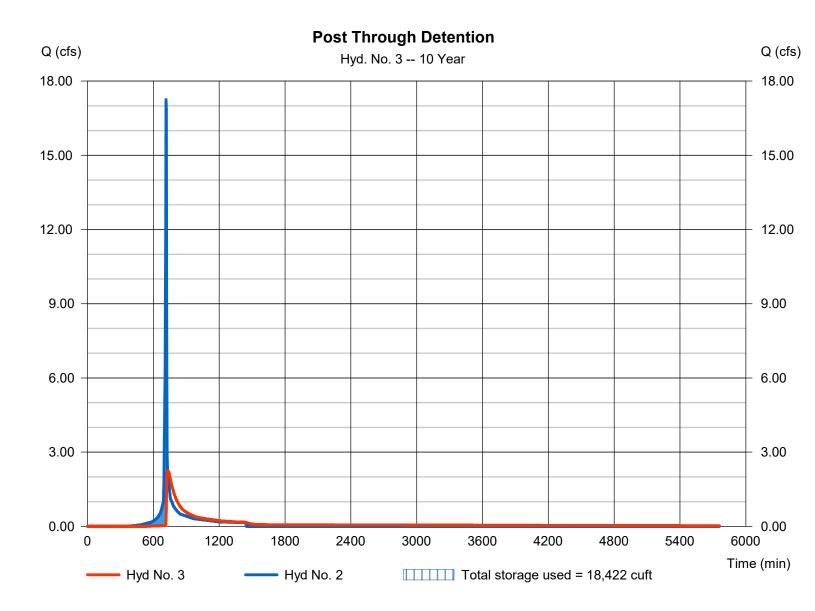
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 17.25 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 35,499 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

19

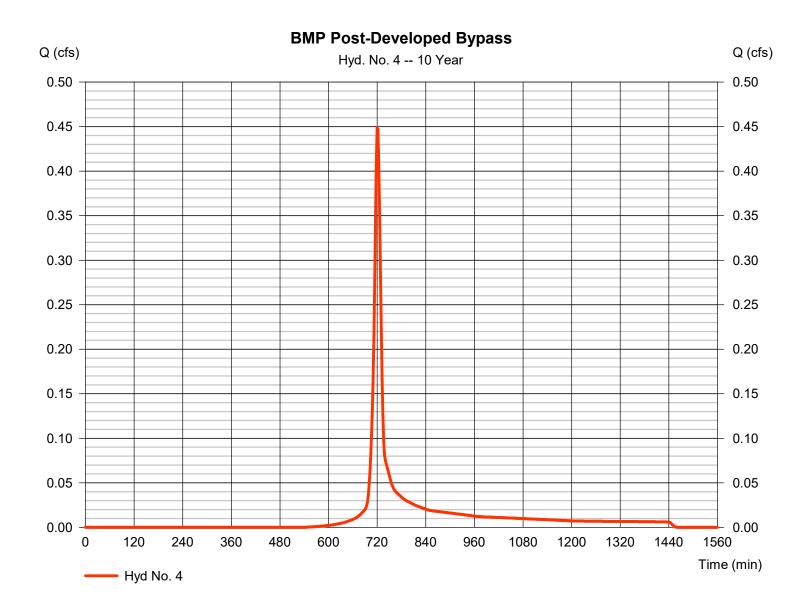

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Post Through Detention

Reservoir	Peak discharge	= 2.248 cfs
= 10 yrs	Time to peak	= 730 min
= 2 min	Hyd. volume	= 34,021 cuft
= 2 - BMP Post-Developed	Max. Elevation	= 331.51 ft
BMP Pond	Max. Storage	= 18,422 cuft
=	10 yrs 2 min 2 - BMP Post-Developed	10 yrsTime to peak2 minHyd. volume2 - BMP Post-DevelopedMax. Elevation

Storage Indication method used.

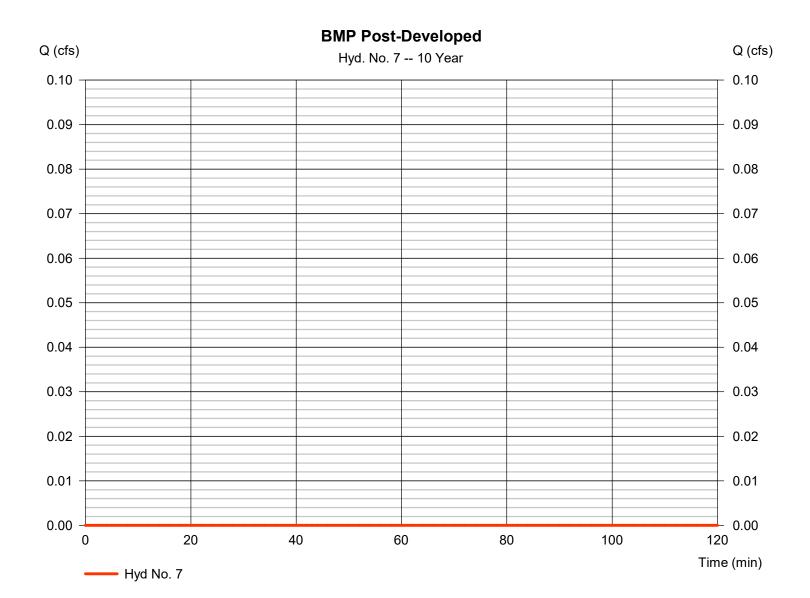


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.449 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 1,168 cuft
Drainage area	= 0.130 ac	Curve number	= 73.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



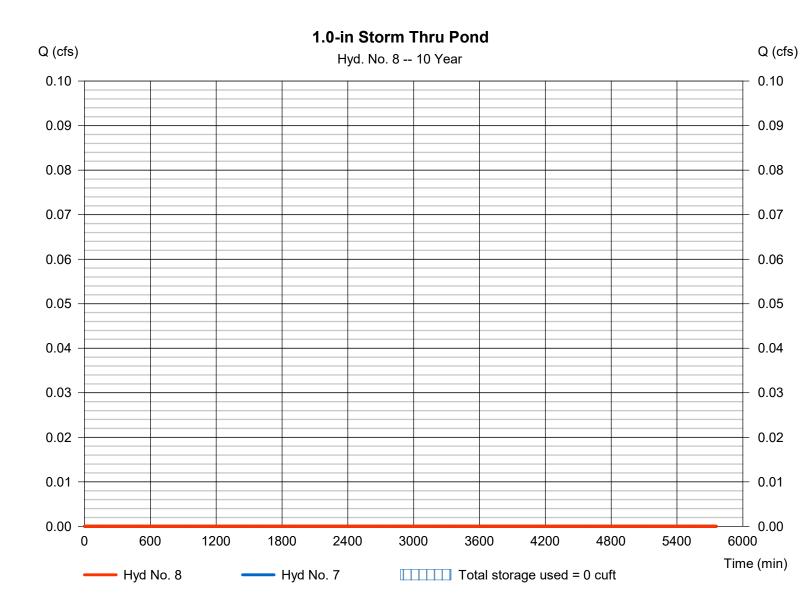
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 0.00 in	Distribution	= SCS 6-Hr
Storm duration	= 6.00 hrs	Shape factor	= 484
		-	

22


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

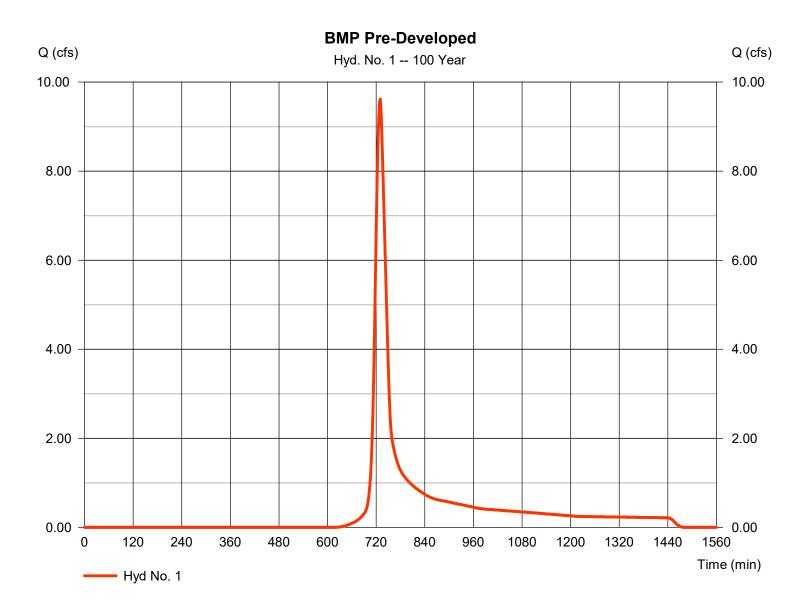
1.0-in Storm Thru Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 7 - BMP Post-Developed	Max. Elevation	= 329.70 ft
Reservoir name	= BMP Pond	Max. Storage	= 0 cuft

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

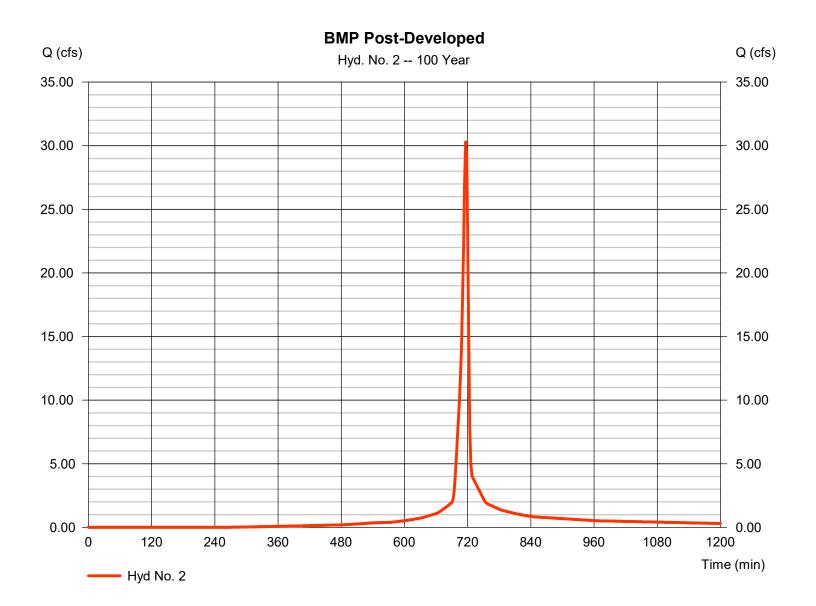

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	9.617	2	730	36,581				BMP Pre-Developed
2	SCS Runoff	30.29	2	716	64,280				BMP Post-Developed
3	Reservoir	10.72	2	724	62,756	2	332.43	29,723	Post Through Detention
4	SCS Runoff	0.902	2	720	2,346				BMP Post-Developed Bypass
7	SCS Runoff	0.000	2	n/a	0				BMP Post-Developed
8	Reservoir	0.000	2	n/a	0	7	329.70	0.000	1.0-in Storm Thru Pond
Sto	rmwater Wet	land-(7-E	leven).gr	l ow	Return F	Period: 100	Year	Tuesday, 1	2 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 9.617 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 36,581 cuft
Drainage area	= 3.410 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 24.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

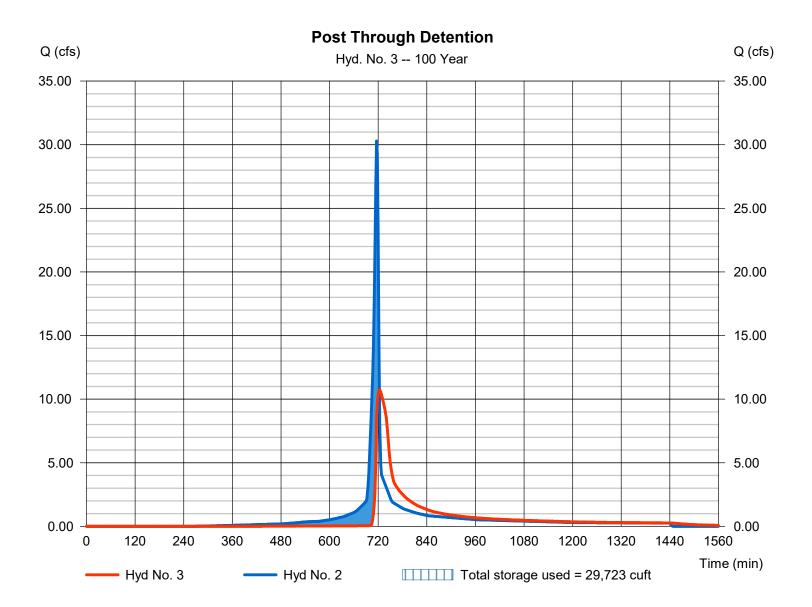

25

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 30.29 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 64,280 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

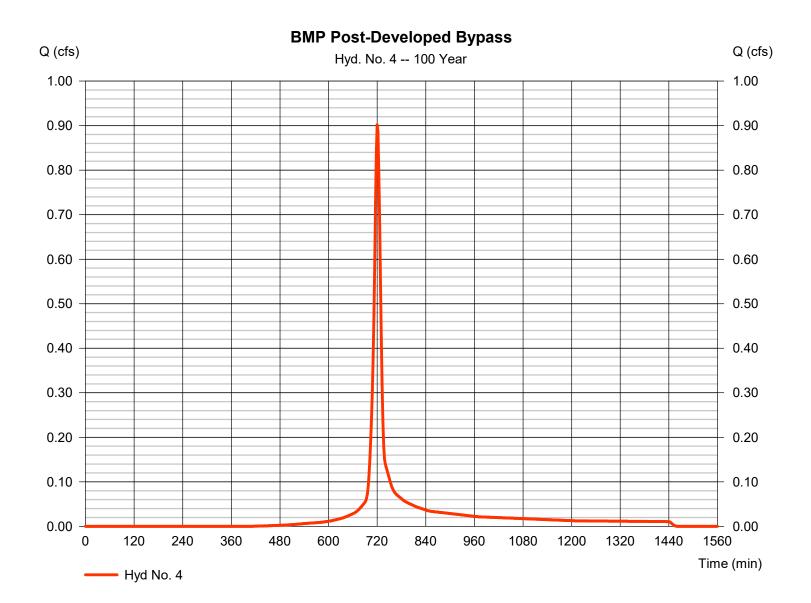

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Post Through Detention

Hydrograph type	= Reservoir	Peak discharge	= 10.72 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 62,756 cuft
Inflow hyd. No.	= 2 - BMP Post-Developed	Max. Elevation	= 332.43 ft
Reservoir name	= BMP Pond	Max. Storage	= 29,723 cuft
2			

Storage Indication method used.

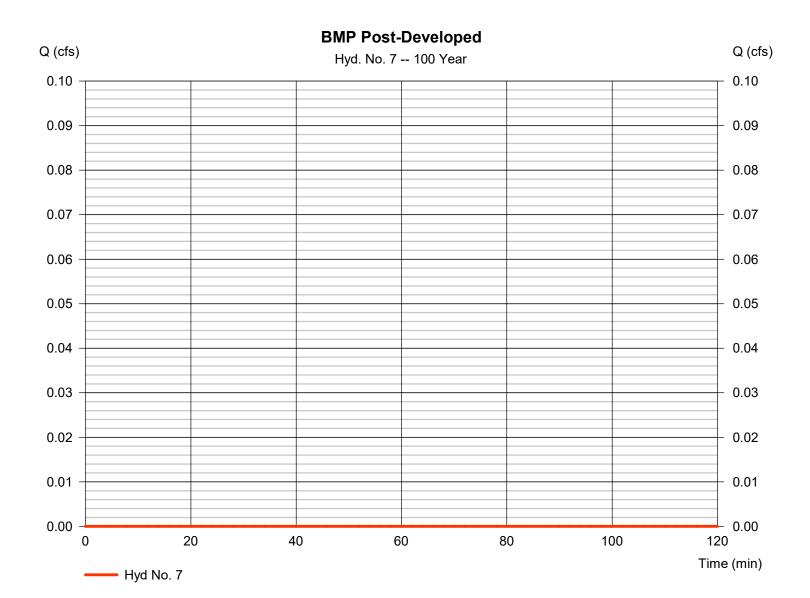

27

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

BMP Post-Developed Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.902 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 2,346 cuft
Drainage area	= 0.130 ac	Curve number	= 73.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

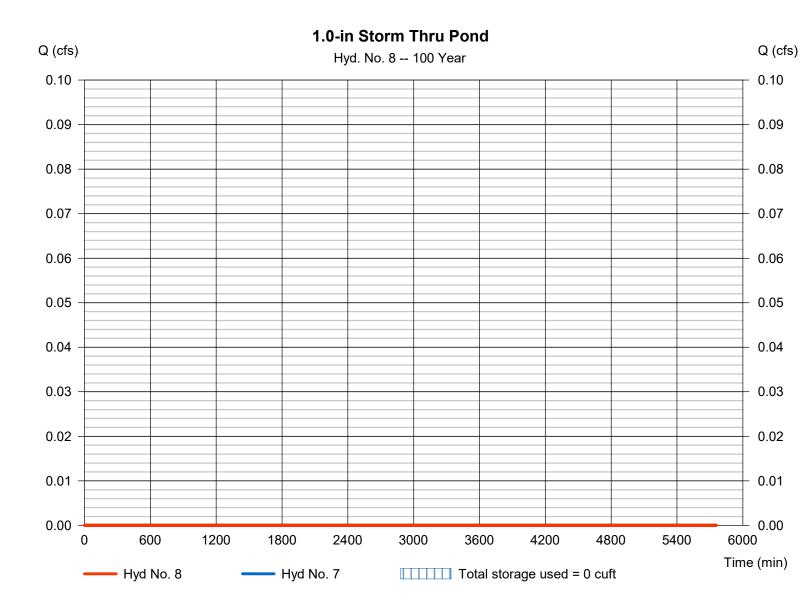


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Drainage area	= 3.160 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 0.00 in	Distribution	= SCS 6-Hr
Storm duration	= 6.00 hrs	Shape factor	= 484
		·	


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

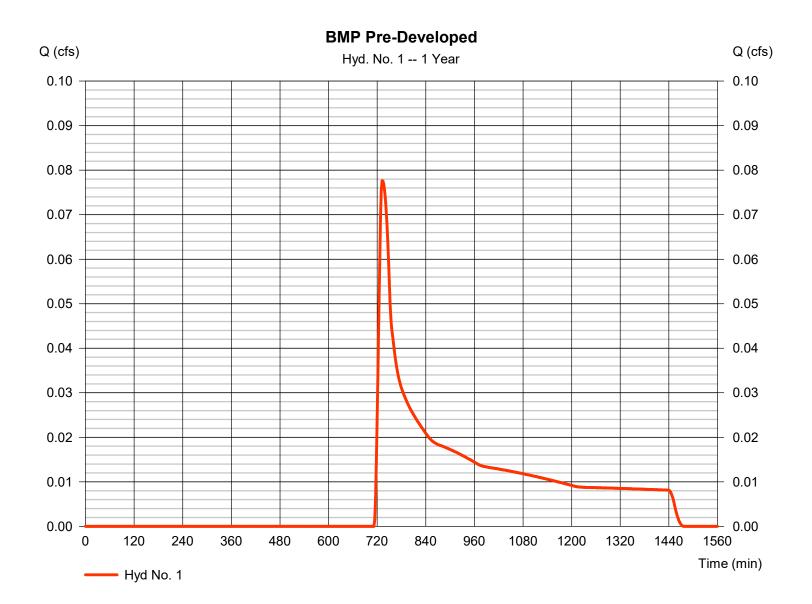
1.0-in Storm Thru Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 7 - BMP Post-Developed	Max. Elevation	= 329.70 ft
Reservoir name	= BMP Pond	Max. Storage	= 0 cuft

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

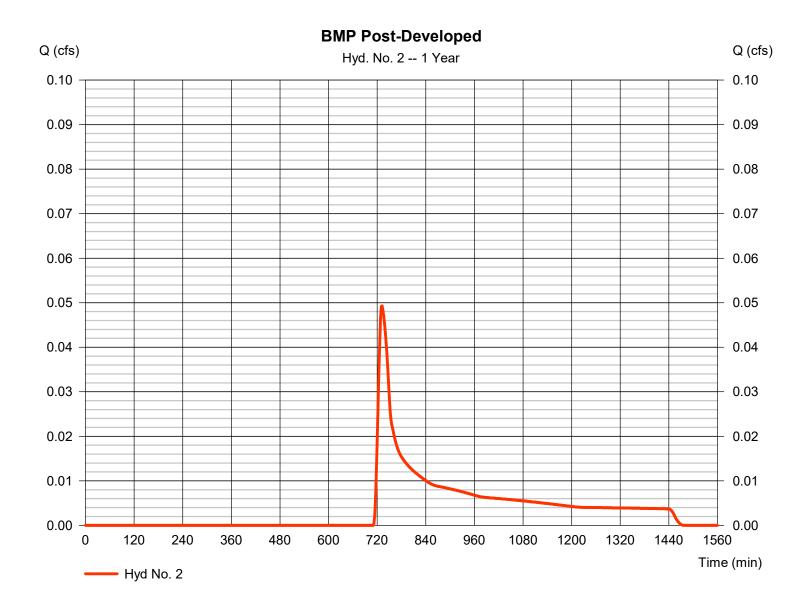

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.078	2	732	705				BMP Pre-Developed
2	SCS Runoff	0.049	2	732	353				BMP Post-Developed
2 3	SCS Runoff	0.049	2	732 716	353 30				BMP Post-Developed Bypass
7-Е	leven Draina	ge Area 2	2.gpw		Return	Period: 1 Ye	ear	Tuesday, 1	2 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.078 cfs
Storm frequency	= 1 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 705 cuft
Drainage area	= 0.840 ac	Curve number	= 58
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

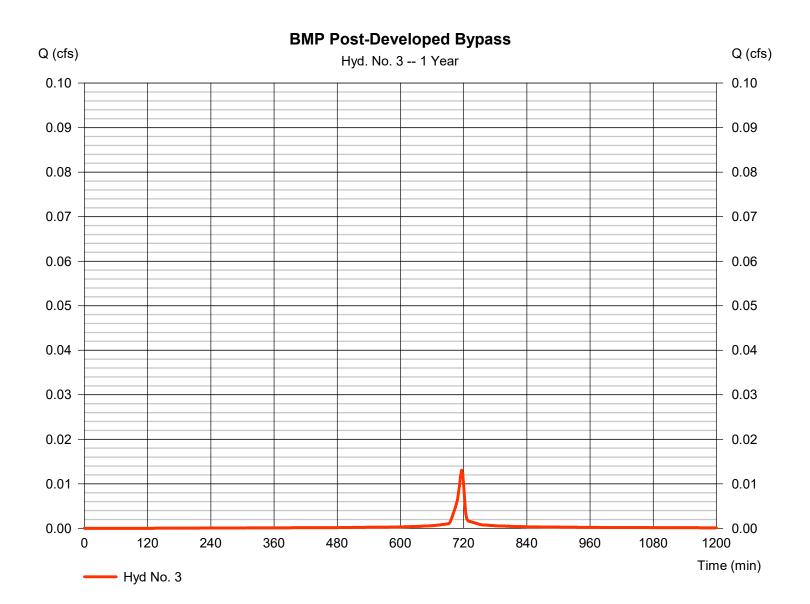


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.049 cfs
Storm frequency	= 1 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 353 cuft
Drainage area	= 0.340 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


3

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

BMP Post-Developed Bypass

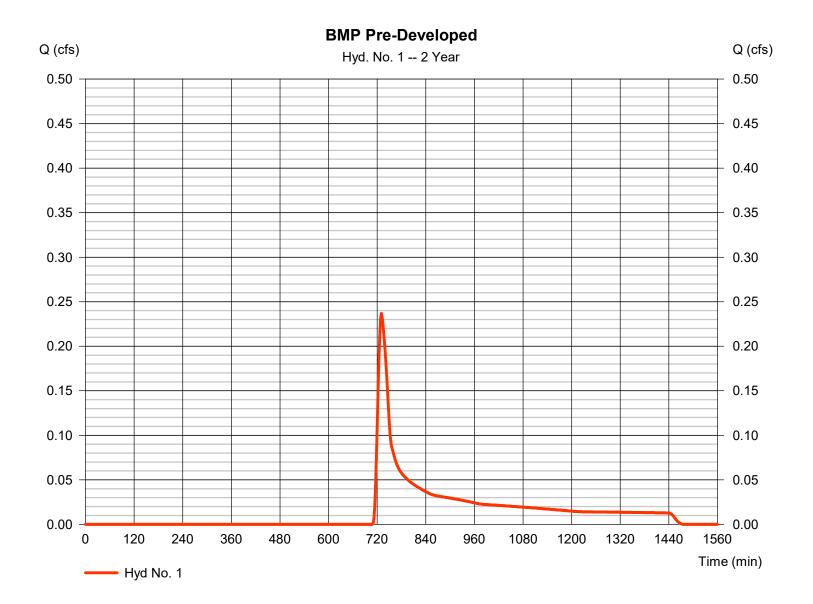
Hydrograph type	= SCS Runoff	Peak discharge	= 0.013 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 30 cuft
Drainage area	= 0.003 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 12 / 5 / 2023

4

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

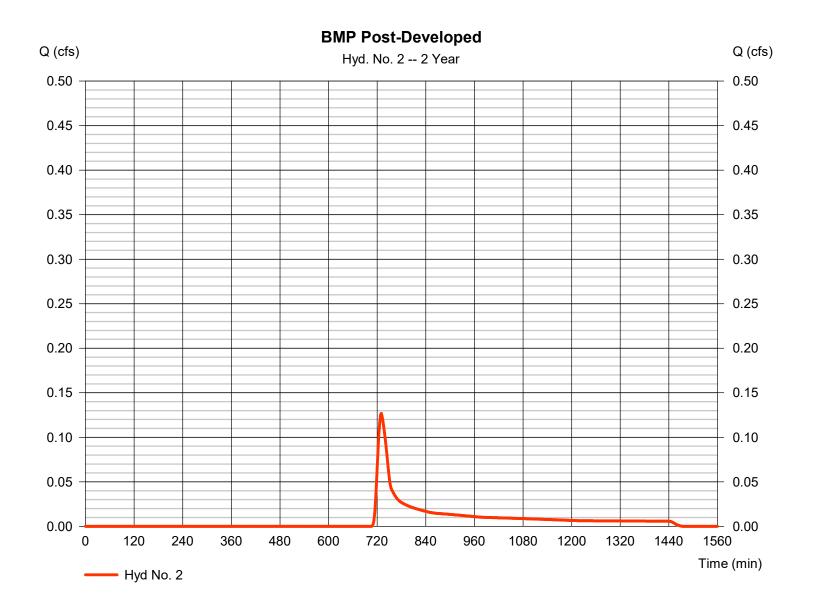

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.237	2	730	1,357				BMP Pre-Developed
2	SCS Runoff	0.127	2	730	646				BMP Post-Developed
3	SCS Runoff	0.016	2	716	37				BMP Post-Developed Bypass
7-E	leven Draina	 ge Area 2	 2.gpw		Return	Period: 2 Ye	ear	Tuesdav. 1	2 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.237 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 1,357 cuft
Drainage area	= 0.840 ac	Curve number	= 58
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 3.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

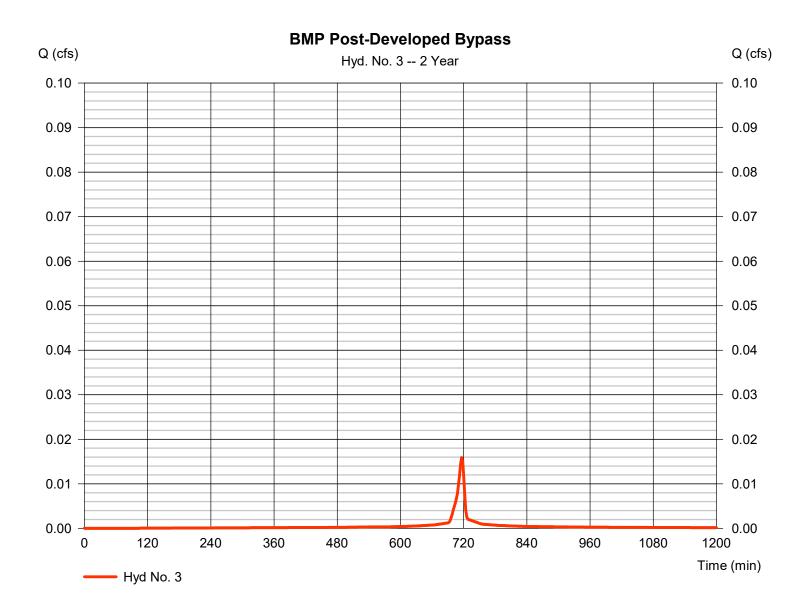

6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.127 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 646 cuft
Drainage area	= 0.340 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 3.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

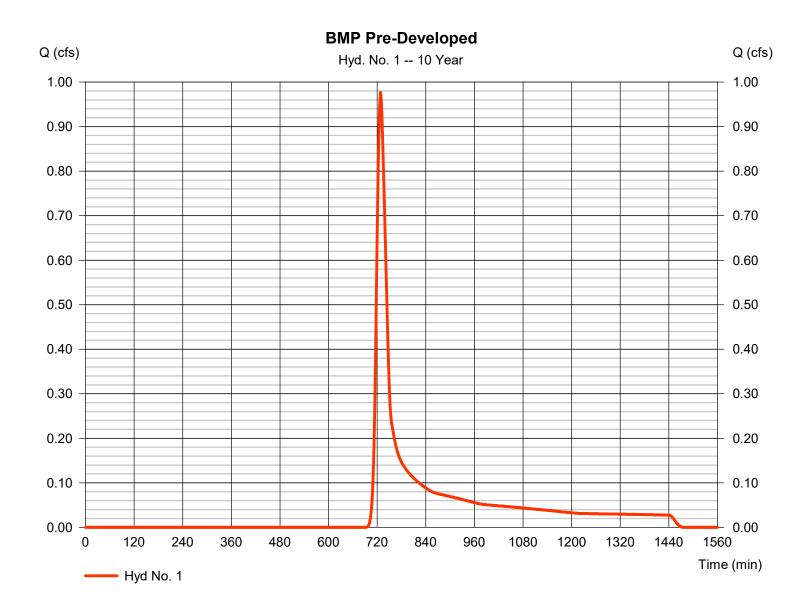
BMP Post-Developed Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.016 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 37 cuft
Drainage area	= 0.003 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

8

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

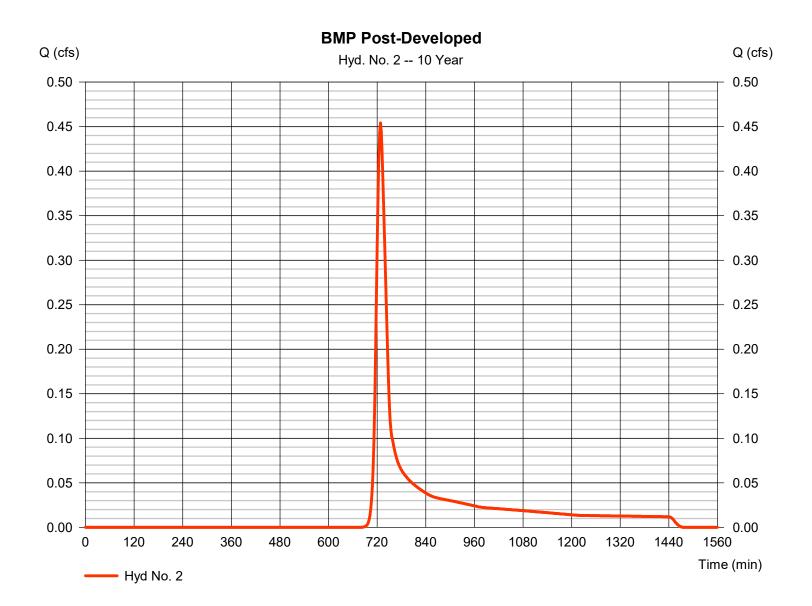

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.977	2	728	3,869				BMP Pre-Developed
2	SCS Runoff	0.454	2	728	1,738				BMP Post-Developed
3	SCS Runoff	0.024	2	716	57				BMP Post-Developed Bypass
7-Е	ileven Draina	ge Area 2	2.gpw		Return	Period: 10 \	/ear	Tuesday, 1	2 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.977 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 3,869 cuft
Drainage area	= 0.840 ac	Curve number	= 58
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

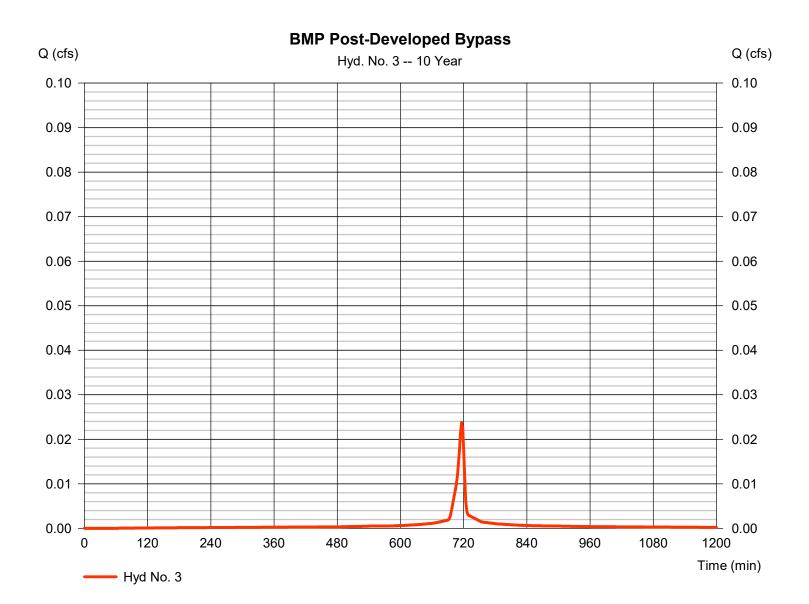


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.454 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 1,738 cuft
Drainage area	= 0.340 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


11

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

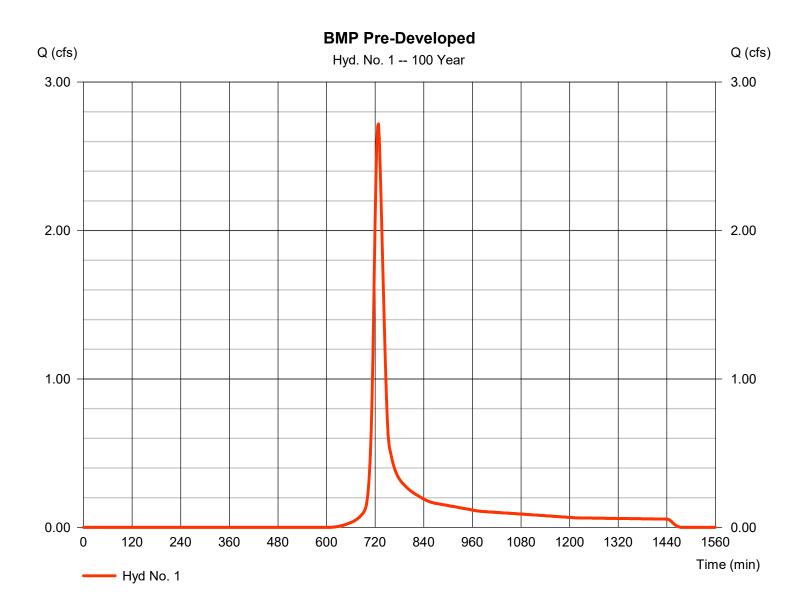
Hyd. No. 3

BMP Post-Developed Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.024 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 57 cuft
Drainage area	= 0.003 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

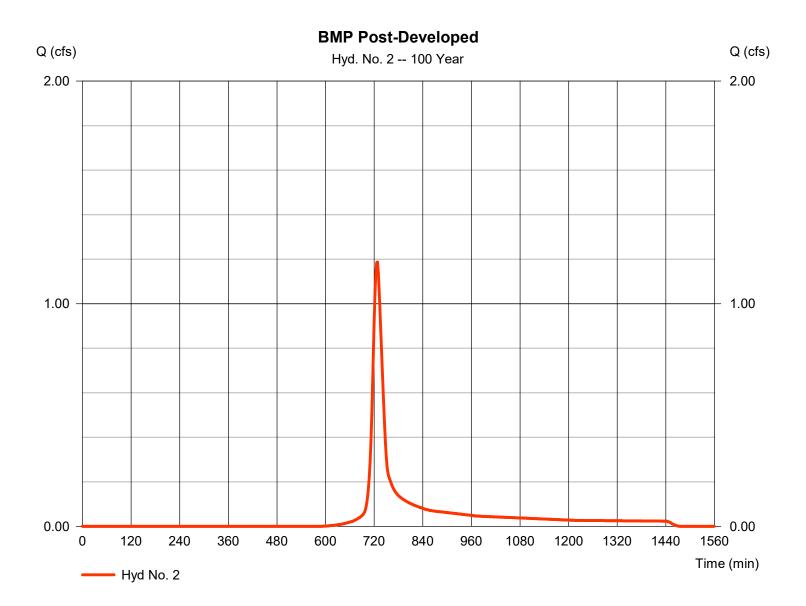

o. type (origin)	flow		Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1 SCS Runoff	2.718	2	728	9,659				BMP Pre-Developed
2 SCS Runoff	1.188	2	728	4,187				BMP Post-Developed
2 SCS Runoff 3 SCS Runoff	1.188 0.037	2	728 716	4,187 90				BMP Post-Developed Bypass

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

BMP Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 2.718 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 9,659 cuft
Drainage area	= 0.840 ac	Curve number	= 58
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

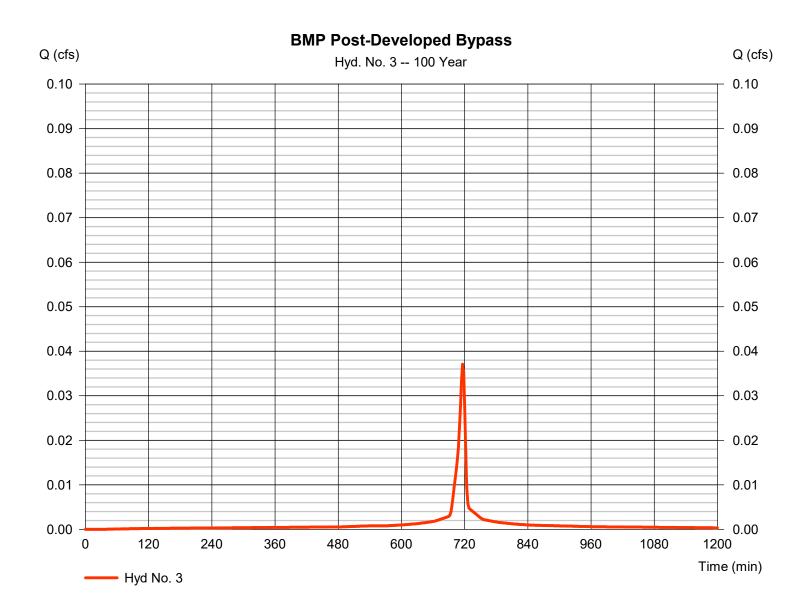


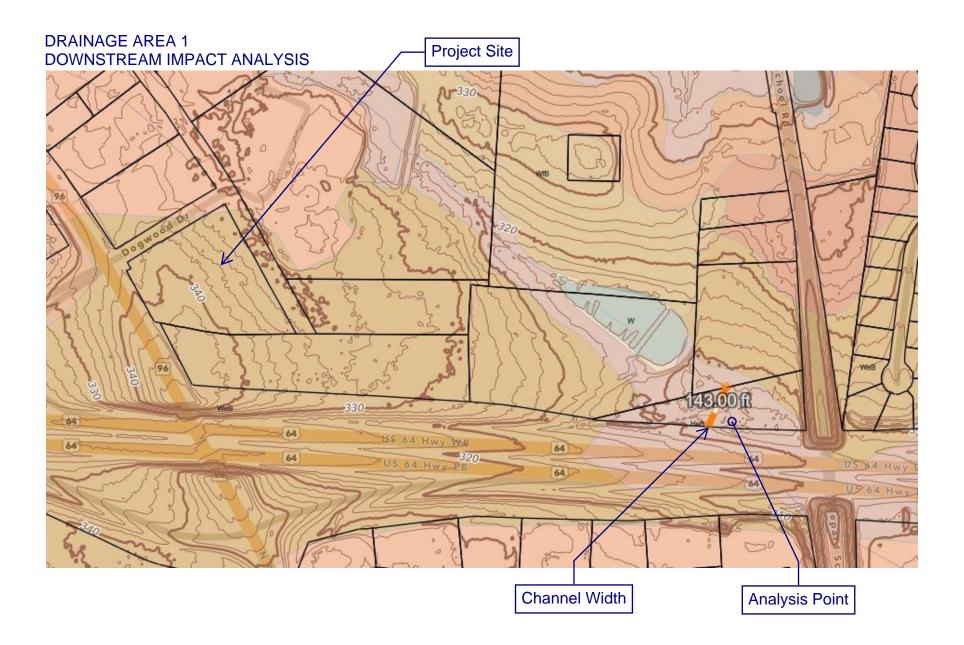
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

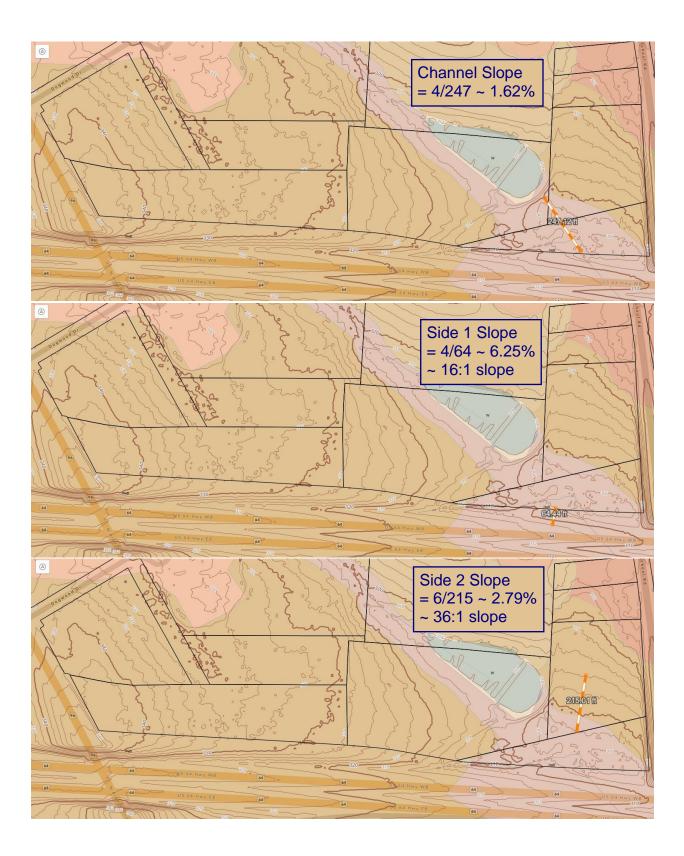
Hyd. No. 2

BMP Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 1.188 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 4,187 cuft
Drainage area	= 0.340 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.20 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

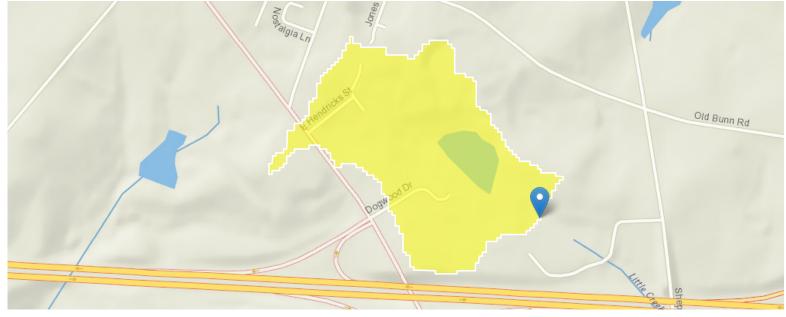

15


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Hyd. No. 3

BMP Post-Developed Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.037 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 90 cuft
Drainage area	= 0.003 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


StreamStats Report

 Region ID:
 NC

 Workspace ID:
 NC20231128205353275000

 Clicked Point (Latitude, Longitude):
 35.83610, -78.31765

 Time:
 2023-11-28 15:54:15 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0829	square miles
LC06IMP	Percentage of impervious area determined from NLCD 2006 impervious dataset	21.62	percent
PCTREG1	Percentage of drainage area located in Region 1 - Piedmont / Ridge and Valley	100	percent
PCTREG2	Percentage of drainage area located in Region 2 - Blue Ridge	0	percent
PCTREG3	Percentage of drainage area located in Region 3 - Sandhills	0	percent
PCTREG4	Percentage of drainage area located in Region 4 - Coastal Plains	0	percent
PCTREG5	Percentage of drainage area located in Region 5 - Lower Tifton Uplands	0	percent

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0829	square miles	0.1	1
LC06IMP	Percent Impervious NLCD2006	21.62	percent	0	47.9

Peak-Flow Statistics Parameters [Peak Southeast US NC 2023 5006]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
PCTREG1	Percent Area in Region 1	100	percent	0	100

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
PCTREG2	Percent Area in Region 2	0	percent	0	100
PCTREG3	Percent Area in Region 3	0	percent	0	100
PCTREG5	Percent Area in Region 5	0	percent	0	100
DRNAREA	Drainage Area	0.0829	square miles	0.08	8902
PCTREG4	Percent Area in Region 4	0	percent	0	100

Peak-Flow Statistics Disclaimers [Region 1 Piedmont rural under 1 sqmi 2014 5030]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Statistic	Value	Unit
50-percent AEP flood	54.1	ft^3/s
20-percent AEP flood	73.4	ft^3/s
10-percent AEP flood	85.2	ft^3/s
4-percent AEP flood	97.9	ft^3/s
2-percent AEP flood	106	ft^3/s
1-percent AEP flood	115	ft^3/s
0.5-percent AEP flood	122	ft^3/s
0.2-percent AEP flood	137	ft^3/s

Peak-Flow Statistics Flow Report [Peak Southeast US NC 2023 5006]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PIL	PIU	ASEp
50-percent AEP flood	29.9	ft^3/s	16.3	54.7	36.8
20-percent AEP flood	55.4	ft^3/s	31.1	98.7	35.8
10-percent AEP flood	76.6	ft^3/s	42.7	138	36.3
4-percent AEP flood	106	ft^3/s	56.6	199	38.4
2-percent AEP flood	133	ft^3/s	70.3	252	39.8
1-percent AEP flood	160	ft^3/s	82.7	310	41.3
0.5-percent AEP flood	188	ft^3/s	95	372	42.8
0.2-percent AEP flood	225	ft^3/s	111	456	44.4

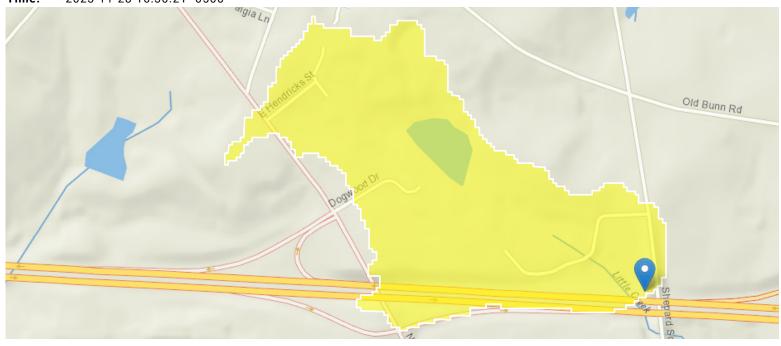
Peak-Flow Statistics Citations

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p. (http://pubs.usgs.gov/sir/2014/5030/)

Feaster, T.D., Gotvald, A.J., Musser, J.W., Weaver, J.C, Kolb, K.R., Veilleux, A.G., and Wagner, D.M.2023, Magnitude and frequency of floods for rural streams in Georgia, South Carolina, and North Carolina, 2017–Results: U.S. Geological Survey Scientific Investigations Report 2023-5006, 75 p. (https://pubs.er.usgs.gov/publication/sir20235006)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS


nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

StreamStats Report

Region ID: NC Workspace ID: NC20231128212959058000 Clicked Point (Latitude, Longitude): 35.83438, -78.31432 Time: 2023-11-28 16:30:21 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.14	square miles
LC06IMP	Percentage of impervious area determined from NLCD 2006 impervious dataset	100	percent
PCTREG1	Percentage of drainage area located in Region 1 - Piedmont / Ridge and Valley	100	percent
PCTREG2	Percentage of drainage area located in Region 2 - Blue Ridge	0	percent
PCTREG3	Percentage of drainage area located in Region 3 - Sandhills	0	percent
PCTREG4	Percentage of drainage area located in Region 4 - Coastal Plains	0	percent
PCTREG5	Percentage of drainage area located in Region 5 - Lower Tifton Uplands	0	percent

General Disclaimers

Parameter values have been edited, computed flows may not apply.

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.14	square miles	0.1	1
LC06IMP	Percent Impervious NLCD2006	100	percent	0	47.9

Peak-Flow Statistics Parameters [Peak Southeast US NC 2023 5006]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
PCTREG1	Percent Area in Region 1	100	percent	0	100
PCTREG2	Percent Area in Region 2	0	percent	0	100
PCTREG3	Percent Area in Region 3	0	percent	0	100
PCTREG5	Percent Area in Region 5	0	percent	0	100
DRNAREA	Drainage Area	0.14	square miles	0.08	8902
PCTREG4	Percent Area in Region 4	0	percent	0	100

Peak-Flow Statistics Disclaimers [Region 1 Piedmont rural under 1 sqmi 2014 5030]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Statistic	Value	Unit
50-percent AEP flood	865	ft^3/s
20-percent AEP flood	610	ft^3/s
10-percent AEP flood	498	ft^3/s
4-percent AEP flood	382	ft^3/s
2-percent AEP flood	313	ft^3/s
1-percent AEP flood	269	ft^3/s
0.5-percent AEP flood	228	ft^3/s
0.2-percent AEP flood	210	ft^3/s

Peak-Flow Statistics Flow Report [Peak Southeast US NC 2023 5006]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PIL	PIU	ASEp
50-percent AEP flood	41.9	ft^3/s	22.9	76.6	36.8
20-percent AEP flood	77.1	ft^3/s	43.3	137	35.8
10-percent AEP flood	106	ft^3/s	59.1	190	36.3
4-percent AEP flood	147	ft^3/s	78.5	275	38.4
2-percent AEP flood	183	ft^3/s	96.8	346	39.8
1-percent AEP flood	219	ft^3/s	113	423	41.3
0.5-percent AEP flood	258	ft^3/s	131	510	42.8

Statistic	Value	Unit	PIL	PIU	ASEp
0.2-percent AEP flood	308	ft^3/s	152	623	44.4

Peak-Flow Statistics Citations

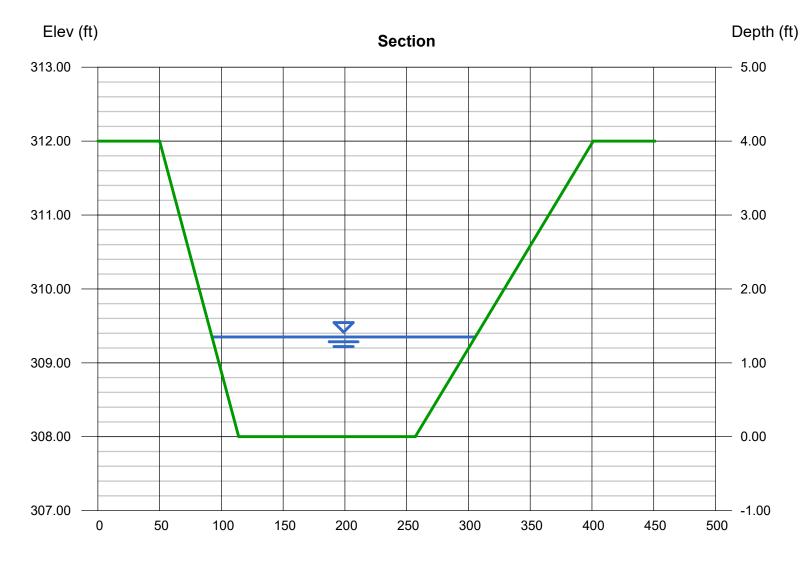
Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p. (http://pubs.usgs.gov/sir/2014/5030/) Feaster, T.D., Gotvald, A.J., Musser, J.W., Weaver, J.C, Kolb, K.R., Veilleux, A.G., and Wagner, D.M.2023, Magnitude and frequency of floods for rural streams in Georgia, South Carolina, and North Carolina, 2017–Results: U.S. Geological Survey Scientific Investigations Report 2023-5006, 75 p. (https://pubs.er.usgs.gov/publication/sir20235006)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1


Channel Report

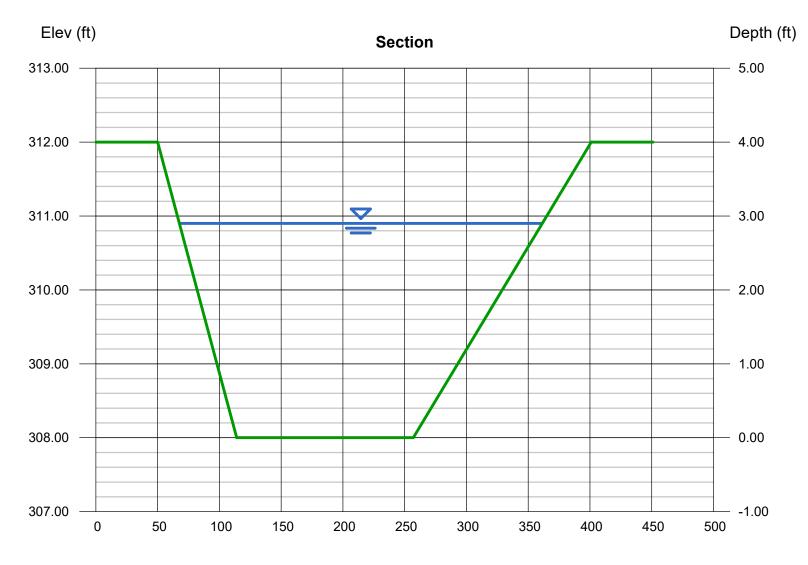
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 29 2023

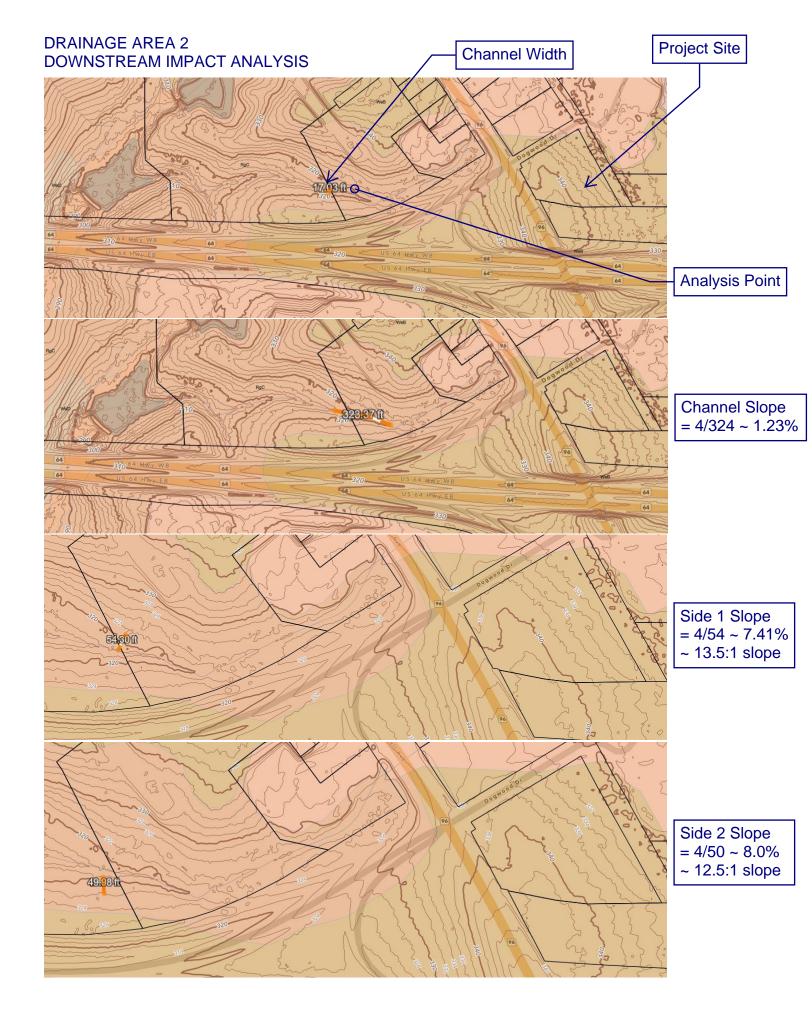
<Name>

Trapezoidal		Highlighted	
Bottom Width (ft)	= 143.00	Depth (ft)	= 1.35
Side Slopes (z:1)	= 16.00, 36.00	Q (cfs)	= 123.00
Total Depth (ft)	= 4.00	Area (sqft)	= 240.43
Invert Elev (ft)	= 308.00	Velocity (ft/s)	= 0.51
Slope (%)	= 1.62	Wetted Perim (ft)	= 213.26
N-Value	= 0.400	Crit Depth, Yc (ft)	= 0.28
		Top Width (ft)	= 213.20
Calculations		EGL (ft)	= 1.35
Compute by:	Known Q		
Known Q (cfs)	= 123.00		

Reach (ft)


Channel Report

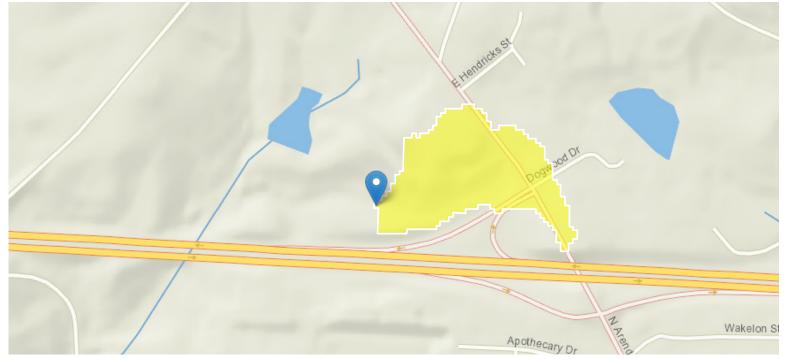
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Wednesday, Nov 29 2023

<Name>

Trapezoidal		Highlighted	
Bottom Width (ft)	= 143.00	Depth (ft)	= 2.90
Side Slopes (z:1)	= 16.00, 36.00	Q (cfs)	= 498.00
Total Depth (ft)	= 4.00	Area (sqft)	= 633.36
Invert Elev (ft)	= 308.00	Velocity (ft/s)	= 0.79
Slope (%)	= 1.62	Wetted Perim (ft)	= 293.93
N-Value	= 0.400	Crit Depth, Yc (ft)	= 0.70
		Top Width (ft)	= 293.80
Calculations		EGL (ft)	= 2.91
Compute by:	Known Q		
Known Q (cfs)	= 498.00		

Reach (ft)


StreamStats Report

 Region ID:
 NC

 Workspace ID:
 NC20231129140440784000

 Clicked Point (Latitude, Longitude):
 35.83572, -78.32615

 Time:
 2023-11-29 09:05:02 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0292	square miles
LC06IMP	Percentage of impervious area determined from NLCD 2006 impervious dataset	<mark>14.48</mark>	percent
PCTREG1	Percentage of drainage area located in Region 1 - Piedmont / Ridge and Valley	100	percent
PCTREG2	Percentage of drainage area located in Region 2 - Blue Ridge	0	percent
PCTREG3	Percentage of drainage area located in Region 3 - Sandhills	0	percent
PCTREG4	Percentage of drainage area located in Region 4 - Coastal Plains	0	percent
PCTREG5	Percentage of drainage area located in Region 5 - Lower Tifton Uplands	0	percent

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0292	square miles	0.1	1
LC06IMP	Percent Impervious NLCD2006	14.48	percent	0	47.9

Peak-Flow Statistics Parameters [Peak Southeast US NC 2023 5006]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
PCTREG1	Percent Area in Region 1	100	percent	0	100
PCTREG2	Percent Area in Region 2	0	percent	0	100
PCTREG3	Percent Area in Region 3	0	percent	0	100
PCTREG5	Percent Area in Region 5	0	percent	0	100
DRNAREA	Drainage Area	0.0292	square miles	0.08	8902
PCTREG4	Percent Area in Region 4	0	percent	0	100

Peak-Flow Statistics Disclaimers [Region 1 Piedmont rural under 1 sqmi 2014 5030]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Statistic	Value	Unit
50-percent AEP flood	20.7	ft^3/s
20-percent AEP flood	29.1	ft^3/s
10-percent AEP flood	<mark>34.2</mark>	ft^3/s
4-percent AEP flood	39.9	ft^3/s
2-percent AEP flood	43.8	ft^3/s
1-percent AEP flood	47.6	ft^3/s
0.5-percent AEP flood	50.9	ft^3/s
0.2-percent AEP flood	58.5	ft^3/s

Peak-Flow Statistics Disclaimers [Peak Southeast US NC 2023 5006]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Peak Southeast US NC 2023 5006]

Statistic	Value	Unit
50-percent AEP flood	15.2	ft^3/s
20-percent AEP flood	28.7	ft^3/s

Statistic	Value	Unit
10-percent AEP flood	40	ft^3/s
4-percent AEP flood	55.9	ft^3/s
2-percent AEP flood	70.3	ft^3/s
1-percent AEP flood	85	ft^3/s
0.5-percent AEP flood	100	ft^3/s
0.2-percent AEP flood	121	ft^3/s

Peak-Flow Statistics Citations

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p. (http://pubs.usgs.gov/sir/2014/5030/)

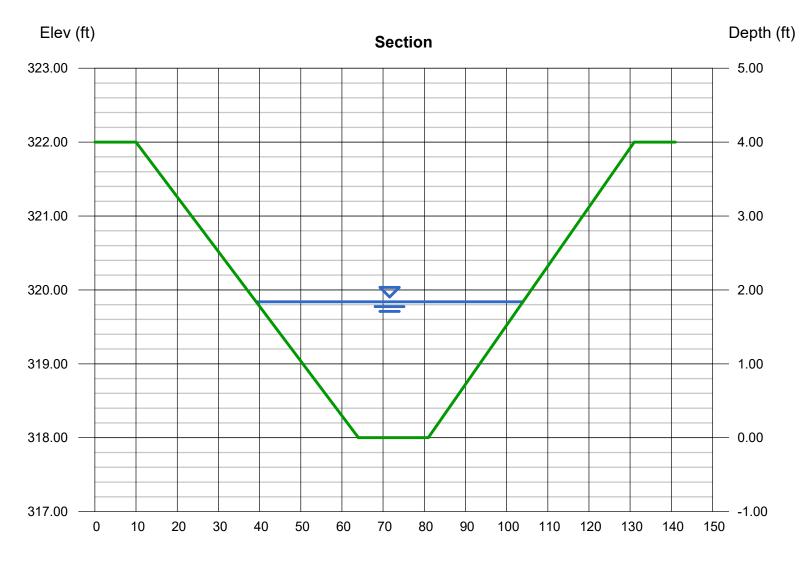
Feaster, T.D., Gotvald, A.J., Musser, J.W., Weaver, J.C, Kolb, K.R., Veilleux, A.G., and Wagner, D.M.2023, Magnitude and frequency of floods for rural streams in Georgia, South Carolina, and North Carolina, 2017– Results: U.S. Geological Survey Scientific Investigations Report 2023-5006, 75 p. (https://pubs.er.usgs.gov/publication/sir20235006)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1


Channel Report

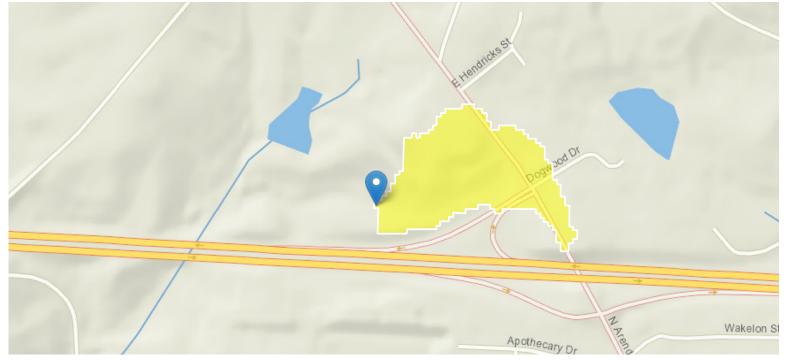
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 29 2023

<Name>

Trapezoidal		Highlighted	
Bottom Width (ft)	= 17.00	Depth (ft)	= 1.84
Side Slopes (z:1)	= 13.50, 12.50	Q (cfs)	= 34.20
Total Depth (ft)	= 4.00	Area (sqft)	= 75.29
Invert Elev (ft)	= 318.00	Velocity (ft/s)	= 0.45
Slope (%)	= 1.23	Wetted Perim (ft)	= 64.98
N-Value	= 0.400	Crit Depth, Yc (ft)	= 0.45
		Top Width (ft)	= 64.84
Calculations		EGL (ft)	= 1.84
Compute by:	Known Q		
Known Q (cfs)	= 34.20		

Reach (ft)


StreamStats Report

 Region ID:
 NC

 Workspace ID:
 NC20231129140440784000

 Clicked Point (Latitude, Longitude):
 35.83572, -78.32615

 Time:
 2023-11-29 09:05:02 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0292	square miles
LC06IMP	Percentage of impervious area determined from NLCD 2006 impervious dataset	100	percent
PCTREG1	Percentage of drainage area located in Region 1 - Piedmont / Ridge and Valley	100	percent
PCTREG2	Percentage of drainage area located in Region 2 - Blue Ridge	0	percent
PCTREG3	Percentage of drainage area located in Region 3 - Sandhills	0	percent
PCTREG4	Percentage of drainage area located in Region 4 - Coastal Plains	0	percent
PCTREG5	Percentage of drainage area located in Region 5 - Lower Tifton Uplands	0	percent

Parameter values have been edited, computed flows may not apply.

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0292	square miles	0.1	1
LC06IMP	Percent Impervious NLCD2006	100	percent	0	47.9

Peak-Flow Statistics Parameters [Peak Southeast US NC 2023 5006]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
PCTREG1	Percent Area in Region 1	100	percent	0	100
PCTREG2	Percent Area in Region 2	0	percent	0	100
PCTREG3	Percent Area in Region 3	0	percent	0	100
PCTREG5	Percent Area in Region 5	0	percent	0	100
DRNAREA	Drainage Area	0.0292	square miles	0.08	8902
PCTREG4	Percent Area in Region 4	0	percent	0	100

Peak-Flow Statistics Disclaimers [Region 1 Piedmont rural under 1 sqmi 2014 5030]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Region 1 Piedmont rural under 1 sqmi 2014 5030]

Statistic	Value	Unit
50-percent AEP flood	285	ft^3/s
20-percent AEP flood	193	ft^3/s
10-percent AEP flood	<mark>153</mark>	ft^3/s
4-percent AEP flood	113	ft^3/s
2-percent AEP flood	90.8	ft^3/s
1-percent AEP flood	76.4	ft^3/s
0.5-percent AEP flood	63.2	ft^3/s
0.2-percent AEP flood	58.5	ft^3/s

Peak-Flow Statistics Disclaimers [Peak Southeast US NC 2023 5006]

Peak-Flow Statistics Flow Report [Peak Southeast US NC 2023 5006]

Statistic	Value	Unit
50-percent AEP flood	15.2	ft^3/s
20-percent AEP flood	28.7	ft^3/s
10-percent AEP flood	40	ft^3/s
4-percent AEP flood	55.9	ft^3/s
2-percent AEP flood	70.3	ft^3/s
1-percent AEP flood	85	ft^3/s
0.5-percent AEP flood	100	ft^3/s
0.2-percent AEP flood	121	ft^3/s

Peak-Flow Statistics Citations

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p. (http://pubs.usgs.gov/sir/2014/5030/)

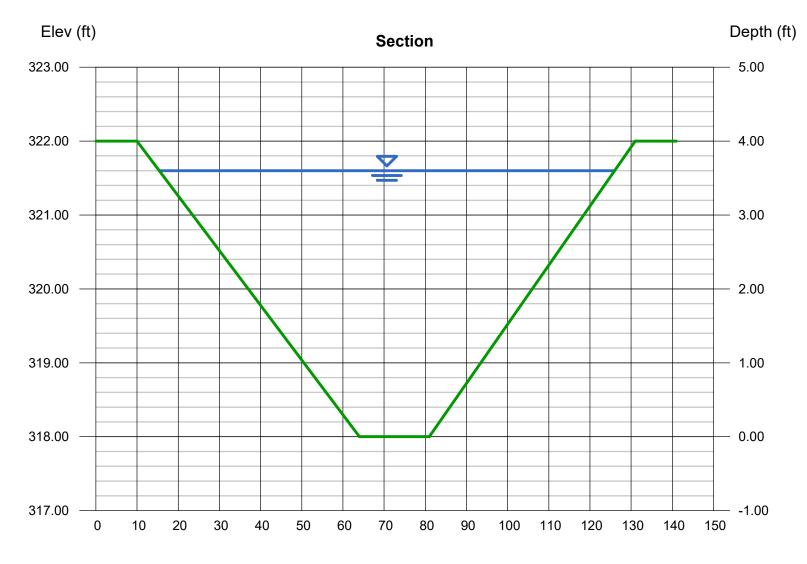
Feaster, T.D., Gotvald, A.J., Musser, J.W., Weaver, J.C, Kolb, K.R., Veilleux, A.G., and Wagner, D.M.2023, Magnitude and frequency of floods for rural streams in Georgia, South Carolina, and North Carolina, 2017– Results: U.S. Geological Survey Scientific Investigations Report 2023-5006, 75 p. (https://pubs.er.usgs.gov/publication/sir20235006)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

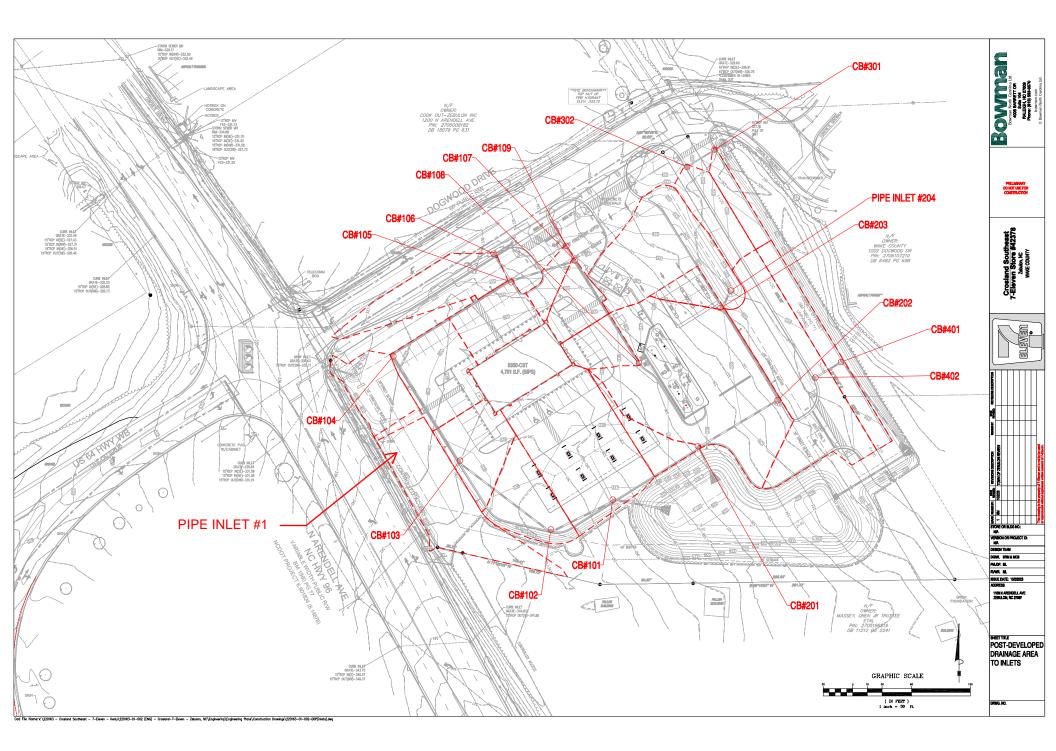

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 29 2023

<Name>

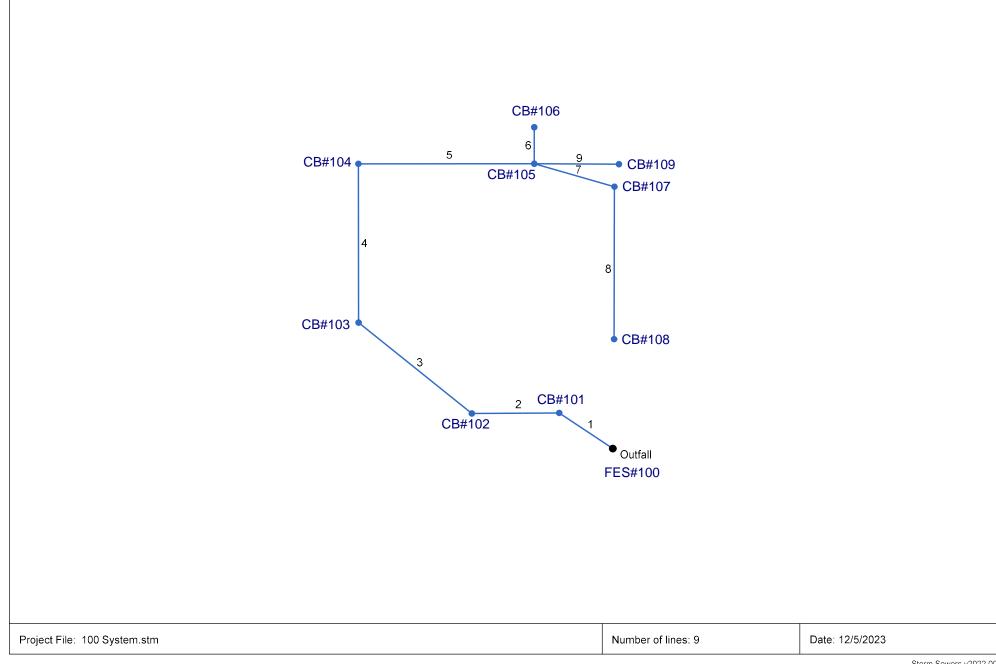
Trapezoidal		Highlighted	
Bottom Width (ft)	= 17.00	Depth (ft)	= 3.60
Side Slopes (z:1)	= 13.50, 12.50	Q (cfs)	= 153.00
Total Depth (ft)	= 4.00	Area (sqft)	= 229.68
Invert Elev (ft)	= 318.00	Velocity (ft/s)	= 0.67
Slope (%)	= 1.23	Wetted Perim (ft)	= 110.88
N-Value	= 0.400	Crit Depth, Yc (ft)	= 1.05
		Top Width (ft)	= 110.60
Calculations		EGL (ft)	= 3.61
Compute by:	Known Q		
Known Q (cfs)	= 153.00		


Reach (ft)

APPENDIX C

Storm Drainage Design Calculations

Post-Development Drainage Map (Inlets) 100 System 200 System 300 System 400 System 500 System Pipe Inlet #1



7-Eleven, Zebulon, NC Bowman North Carolina, Ltd.

Rational Runoff Coefficient "C"										
Catch Basin#101										
Drainage Area (acres): 0.33										
Proposed Land Uses: Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	<u>Acres</u> 0.00 0.31 0.02 0.00 0.33	<u>% Site</u> 0% 95% 5% 0% Cumulative "C" = i10= Q10=	<u>Runoff "C"</u> 0.95 0.95 0.3 0.2	<u>"C"</u> 0.00 0.90 0.02 0.00 0.91 7.21 2.16						
Catch Basin#102										
Drainage Area (acres): 0.12										
<u>Proposed Land Uses:</u> <u>Land Use Description</u> Roofs Asphalt/Concrete Pavement Lawn <u>Wooded</u> Total Area=	Acres 0.00 0.10 0.02 0.00 0.12	<u>% Site</u> 0% 83% 17% 0% Cumulative "C" = i10= Q10=	<u>Runoff "C"</u> 0.95 0.95 0.3 0.2	<u>"C"</u> 0.00 0.79 0.05 0.00 0.84 7.21 0.75						
Catch Basin#103										
Drainage Area (acres): 0.11										
<u>Proposed Land Uses:</u> <u>Land Use Description</u> Roofs Asphalt/Concrete Pavement Lawn <u>Wooded</u> Total Area=	<u>Acres</u> 0.00 0.09 0.02 0.00 0.11	<u>% Site</u> 0% 79% 21% 0% Cumulative "C" = i10= Q10=	<u>Runoff "C"</u> 0.95 0.95 0.3 0.2	<u>"C"</u> 0.00 0.75 0.06 0.00 0.81 7.21 0.67						
Catch Basin#104										
Drainage Area (acres): 0.14 Proposed Land Uses:	<u>Acres</u> 0.00 0.13 0.02 0.00 0.14	<u>% Site</u> 0% 89% 11% 0% Cumulative "C" = i10= Q10=	<u>Runoff "C"</u> 0.95 0.95 0.3 0.2	<u>"C"</u> 0.00 0.84 0.03 0.00 0.88 7.21 0.91						
Catch Basin#105										
<u>Drainage Area (acres):</u> 0.21 <u>Proposed Land Uses:</u> <u>Land Use Description</u> Roofs Asphalt/Concrete Pavement Lawn Wooded Total Area=	<u>Acres</u> 0.11 0.10 0.00 0.00 0.21	<u>% Site</u> 53% 45% 2% 0% Cumulative "C" = i10= Q10=	<u>Runoff "C"</u> 0.95 0.95 0.3 0.2	<u>"C"</u> 0.50 0.43 0.01 0.00 0.94 7.21 1.44						

Catch Basin#106				
Drainage Area (acres): 0.14				
Proposed Land Uses:				
Land Use Description	<u>Acres</u>	<u>% Site</u>	Runoff "C"	<u>"C"</u>
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.11	75%	0.95	0.71
Lawn	0.04	25%	0.3	0.08
Wooded Total Area=	0.00	0% Cumulative "C" =	0.2	0.00
TOTAL ATEA=	0.14	i10=		0.79 7.21
		Q10=		0.80
Catch Basin#107				
Drainage Area (acres): 0.08				
Proposed Land Uses:				
Land Use Description	Acres	% Site	Runoff "C"	"C"
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.07	88%	0.95	0.83
Lawn	0.01	12%	0.3	0.04
Wooded	0.00	0%	0.2	0.00
Total Area=	0.08	Cumulative "C" =		0.87 7.21
		i10= Q10=		0.52
Catch Basin#108				
<u>Drainage Area (acres):</u> 0.06				
Proposed Land Uses:				
Land Use Description	Acres	<u>% Site</u>	Runoff "C"	<u>"C"</u>
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.06	94%	0.95	0.89
Lawn	0.00	6%	0.3	0.02
Wooded Total Area=	0.00	0% Cumulative "C" =	0.2	0.00
Total Area=	0.06	i10=		7.21
		Q10=		0.41
Catch Basin#109				
Drainage Area (acres): 0.03				
Proposed Land Uses:				
Proposed Land Uses: Land Use Description	Acres	<u>% Site</u>	Runoff "C"	<u>"C"</u>
Proposed Land Uses: Land Use Description Roofs	0.00	0%	0.95	0.00
<u>Proposed Land Uses:</u> <u>Land Use Description</u> Roofs Asphalt/Concrete Pavement	0.00 0.03	0% 100%	0.95 0.95	0.00 0.95
<u>Proposed Land Uses:</u> <u>Land Use Description</u> Roofs Asphalt/Concrete Pavement Lawn	0.00 0.03 0.00	0% 100% 0%	0.95 0.95 0.3	0.00 0.95 0.00
<u>Proposed Land Uses:</u> <u>Land Use Description</u> Roofs Asphalt/Concrete Pavement Lawn Wooded	0.00 0.03 0.00 0.00	0% 100% 0% 0%	0.95 0.95	0.00 0.95 0.00 0.00
<u>Proposed Land Uses:</u> <u>Land Use Description</u> Roofs Asphalt/Concrete Pavement Lawn	0.00 0.03 0.00	0% 100% 0%	0.95 0.95 0.3	0.00 0.95 0.00

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

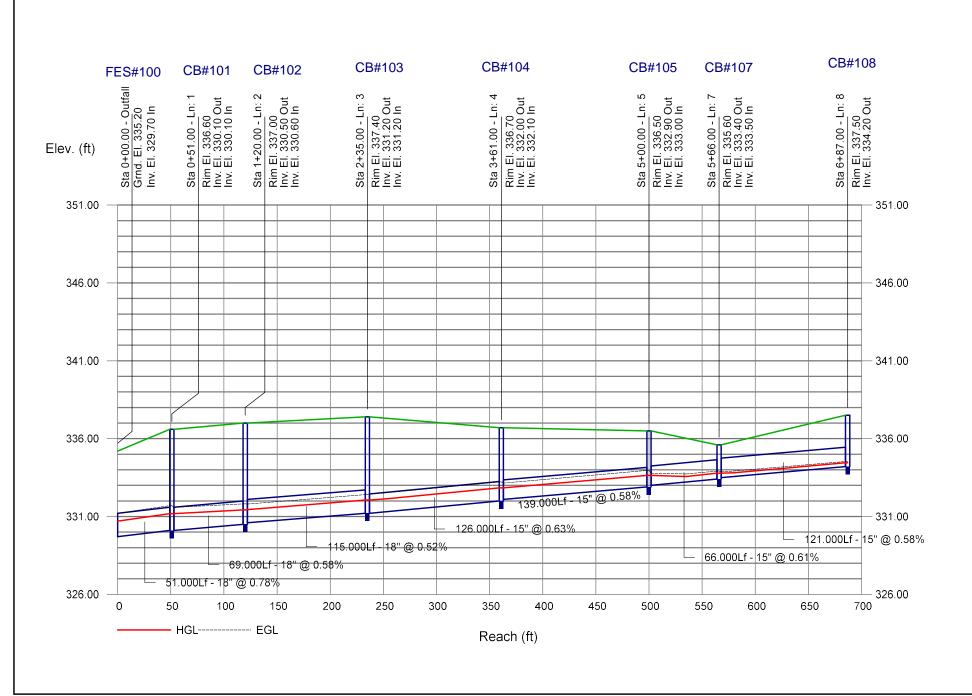
Line		Alignr	ment			Flow	v Data			Physical Data				Line ID			
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	51.000	-146.31	∮Curb	2.16	0.00	0.00	0.0	329.70	0.78	330.10	18	Cir	0.012	0.92	336.60	
2	1	69.000	-34.053	, Curb	0.75	0.00	0.00	0.0	330.10	0.58	330.50	18	Cir	0.012	1.02	337.00	
3	2	115.000	39.225	Curb	0.67	0.00	0.00	0.0	330.60	0.52	331.20	18	Cir	0.012	1.22	337.40	
4	3	126.000	51.059	Curb	0.91	0.00	0.00	0.0	331.20	0.63	332.00	15	Cir	0.012	1.50	336.70	
5	4	139.000	90.054	Curb	1.44	0.00	0.00	0.0	332.10	0.58	332.90	15	Cir	0.012	1.50	336.50	
6	5	29.000	-89.926	Curb	0.80	0.00	0.00	0.0	333.00	0.69	333.20	15	Cir	0.012	1.00	335.70	
7	5	66.000	16.053	Curb	0.52	0.00	0.00	0.0	333.00	0.61	333.40	15	Cir	0.012	1.45	335.60	
8	7	121.000			0.41	0.00	0.00	0.0	333.50	0.58	334.20	15	Cir	0.012	1.00	337.50	
9	5	67.000		Curb	0.23	0.00	0.00	0.0	332.98	0.51	333.32	8	Cir	0.012	1.00	334.83	
Projec	;t File: 100) System.stm	ישביים ו			1				1		Number	of lines: 9			Date: 1	2/5/2023

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Ou	ıt		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Curb-	336.60	Cir	4.00	4.00	18	Cir	330.10	18	Cir	330.10
2		Curb-	337.00	Cir	4.00	4.00	18	Cir	330.50	18	Cir	330.60
3		Curb-	337.40	Cir	4.00	4.00	18	Cir	331.20	15	Cir	331.20
4		Curb-	336.70	Cir	4.00	4.00	15	Cir	332.00	15	Cir	332.10
5		Curb-	336.50	Cir	4.00	4.00	15	Cir	332.90	15 15 8	Cir Cir Cir	333.00 333.00 332.98
6		Curb-	335.70	Cir	4.00	4.00	15	Cir	333.20			
7		Curb-	335.60	Cir	4.00	4.00	15	Cir	333.40	15	Cir	333.50
8		Curb-	337.50	Cir	4.00	4.00	15	Cir	334.20			
9		Curb-	334.83	Cir	4.00	4.00	8	Cir	333.32			
Project F	ile: 100 System.stm						N	lumber of Struc	tures: 9	Rur	n Date: 12/5/20	23

Storm Sewer Summary Report

_ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		7.89	18	Cir	51.000	329.70	330.10	0.784	330.70	331.19	0.47	331.19	End	Curb-
2		5.73	18	Cir	69.000	330.10	330.50	0.580	331.19	331.42	n/a	331.42	1	Curb-
3		4.98	18	Cir	115.000	330.60	331.20	0.522	331.44	332.06	0.43	332.06	2	Curb-
4		4.31	15	Cir	126.000	331.20	332.00	0.635	332.06	332.84	n/a	332.84 j	3	Curb-
5		3.40	15	Cir	139.000	332.10	332.90	0.576	332.84	333.64	n/a	333.64	4	Curb-
6		0.80	15	Cir	29.000	333.00	333.20	0.690	333.64	333.55	n/a	333.55	5	Curb-
7		0.93	15	Cir	66.000	333.00	333.40	0.606	333.64	333.78	n/a	333.78 j	5	Curb-
8		0.41	15	Cir	121.000	333.50	334.20	0.579	333.78	334.45	n/a	334.45 j	7	Curb-
9		0.23	8	Cir	67.000	332.98	333.32	0.507	333.64	333.67	0.02	333.69	5	Curb-
Project	File: 100 System.stm			1					Number	of lines: 9		Run	 Date: 12/5	/2023
	S: Return period = 10 Yrs. ; j - Lin	a containe h	vd. jump											


Hydraulic Grade Line Computations

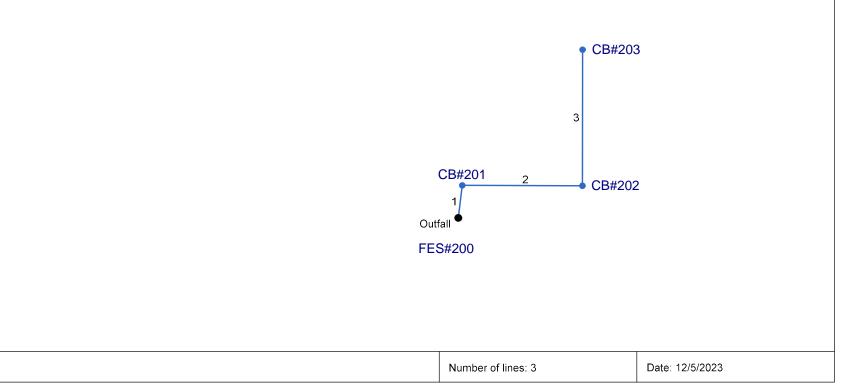
Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Sf	Enrgy Ioss (ft)	coeff (K)	loss (ft)
1	18	7.89	329.70	330.70	1.00	1.25	6.31	0.51	331.21	0.000	51.000	330.10	331.19	1.09**	1.37	5.75	0.51	331.70	0.000	0.000	n/a	0.92	0.47
2	18	5.73	330.10	331.19	1.09	1.14	4.18	0.39	331.58	0.000	69.000	330.50	331.42	0.92**	1.14	5.02	0.39	331.82	0.000	0.000	n/a	1.02	n/a
3	18	4.98	330.60	331.44	0.84*	1.02	4.87	0.35	331.80	0.000	115.00	0331.20	332.06	0.86**	1.04	4.77	0.35	332.41	0.000	0.000	n/a	1.22	0.43
4	15	4.31	331.20	332.06	0.86	0.88	4.80	0.38	332.43	0.000	126.00	0332.00	332.84 j	0.84**	0.88	4.91	0.38	333.22	0.000	0.000	n/a	1.50	n/a
5	15	3.40	332.10	332.84	0.74	0.76	4.49	0.31	333.15	0.000	139.00	0332.90	333.64	0.74**	0.76	4.47	0.31	333.95	0.000	0.000	n/a	1.50	n/a
6	15	0.80	333.00	333.64	0.64	0.28	1.26	0.13	333.77	0.000	29.000	333.20	333.55	0.35**	0.28	2.85	0.13	333.68	0.000	0.000	n/a	1.00	n/a
7	15	0.93	333.00	333.64	0.64	0.31	1.46	0.14	333.78	0.000	66.000	333.40	333.78 j	0.38**	0.31	2.97	0.14	333.92	0.000	0.000	n/a	1.45	0.20
8	15	0.41	333.50	333.78	0.28	0.17	2.01	0.09	333.87	0.000	121.00	0334.20	334.45 j	0.25**	0.17	2.37	0.09	334.54	0.000	0.000	n/a	1.00	n/a
9	8	0.23	332.98	333.64	0.66	0.35	0.66	0.01	333.65	0.029	67.000	333.32	333.67	0.35	0.19	1.24	0.02	333.69	0.105	0.067	0.045	1.00	0.02
Proj	ect File: 1	IO0 Syste	em.stm	1	1	1	1	1	1	1	<u> </u>	I	I	N	umber o	of lines: 9)	<u> </u>	Rur	Date: ´	2/5/202		
Note	se * dant	hassum	ed: ** Criti	cal denth :	i-l ine co	ntaine h	vd iumn	· · · · - ·	ir e = ellip	h = hoy													

Storm Sewer Profile

CB#106 CB#103 CB#104 CB#105 CB#102 CB#101 FES#100 Sta 0+00.00 - Outfall Grnd. El. 335.20 Inv. El. 329.70 In Sta 1+20.00 - Ln: 2 Rim El. 337.00 Inv. El. 330.50 Out Inv. El. 330.60 In Sta 2+35.00 - Ln: 3 Rim El. 337.40 Inv. El. 331.20 Out Inv. El. 331.20 In Sta 3+61.00 - Ln: 4 Rim El. 336.70 Inv. El. 332.00 Out Inv. El. 332.10 In Sta 5+00.00 - Ln: 5 Rim El. 336.50 Inv. El. 332.90 Out Inv. El. 333.00 In Sta 5+29.00 - Ln: 6 Rim El. 335.70 Inv. El. 333.20 Out Sta 0+51.00 - Ln: 1 Rim EI. 336.60 Inv. EI. 330.10 Out Inv. EI. 330.10 In Elev. (ft) 347.00 347.00 - 343.00 343.00 339.00 339.00 335.00 335.00 139.000Lf - 15" @ 0.58% 126.000Lf - 15" @ 0.63% 331.00 -115,000Lf - 18" @ 0.52% - 331.00 29.000Lf - 15" @ 0.69% 69.000Lf - 18' @ 0.58% 51 000Lf - 18" @ 0.78% 327.00 -- 327.00 0 100 200 550 50 150 250 300 350 400 450 500 HGL----- EGL Reach (ft)

Storm Sewer Profile

Storm Sewer Profile


CB#103 CB#104 CB#105 CB#109 CB#102 FES#100 CB#101 Sta 0+00.00 - Outfall Grnd. El. 335.20 Inv. El. 329.70 In Sta 1+20.00 - Ln: 2 Rim El. 337.00 Inv. El. 330.50 Out Inv. El. 330.60 In Sta 2+35.00 - Ln: 3 Rim El. 337.40 Inv. El. 331.20 Out Inv. El. 331.20 In Sta 3+61.00 - Ln: 4 Rim El. 336.70 Inv. El. 332.00 Out Inv. El. 332.10 In Sta 5+00.00 - Ln: 5 Rim El. 336.50 Inv. El. 332.90 Out Inv. El. 332.98 In Sta 5+67.00 - Ln: 9 Rim El. 334.83 Inv. El. 333.32 Out Sta 0+51.00 - Ln: 1 Rim EI. 336.60 Inv. EI. 330.10 Out Inv. EI. 330.10 In Elev. (ft) 347.00 347.00 343.00 343.00 339.00 339.00 335.00 335.00 139.000Lf - 15" @ 0.58% 126.000Lf - 15" @ 0.63% 115.000Lf - 18" @ 0.52% 331.00 - 331.00 67.000Lf - 8" @ 0.51% ____ 69.000Lf - 18" @ 0.58% 51.000Lf - 18" @ 0.78% 327.00 327.00 0 50 100 500 550 600 150 200 250 300 350 400 450 HGL----- EGL Reach (ft)

7-Eleven, Zebulon, NC Bowman North Carolina, Ltd.

Rational F	Runoff Coefficient	t "C"		
Catch Basin#201				
Drainage Area (acres): 0.05				
Proposed Land Uses: Land Use Description	Acres	<u>% Site</u>	Runoff "C"	<u>"C"</u>
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.05	98%	0.95	0.93
Lawn Wooded	0.00 0.00	2% 0%	0.3 0.2	0.01 0.00
Total Area=	0.00	Cumulative "C" =	0.2	0.00
		i10=	_	7.21
		Q10=		0.37
Catch Basin#202				
Drainage Area (acres): 0.48				
Proposed Land Uses:	Aaros	0/ 040	Buncff "O"	"0"
<u>Land Use Description</u> Roofs	<u>Acres</u> 0.00	<u>% Site</u> 0%	<u>Runoff "C"</u> 0.95	<u>"C"</u> 0.00
Asphalt/Concrete Pavement	0.44	91%	0.95	0.87
Lawn	0.04	9%	0.3	0.03
Wooded Total Area=	0.00	0%	0.2	0.00
I otal Area=	0.48	Cumulative "C" = i10=		0.89 7.21
		Q10=		3.12
Catch Basin#203				
<u>Drainage Area (acres):</u> 0.04				
Proposed Land Uses:				
Land Use Description	<u>Acres</u>	<u>% Site</u>	Runoff "C"	"C"
Roofs	0.04	100%	0.95	0.95
Asphalt/Concrete Pavement Lawn	0.00 0.00	0% 0%	0.95 0.3	0.00 0.00
Wooded	0.00	0%	0.3	0.00
Total Area=	0.04	Cumulative "C" =		0.95
		i10= Q10=		7.21 0.25
Pipe Inlet #204				
Drainage Area (acres): 0.25				
<u>Proposed Land Uses:</u> Land Use Description	Acres	% Site	Runoff "C"	"C"
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.15	60%	0.95	0.57
Lawn	0.10	40%	0.3	0.12
Wooded Total Area=	0.00 0.25	0% Cumulative "C" =	0.2	0.00
	0.20	i10=		7.21
		Q10=		1.23

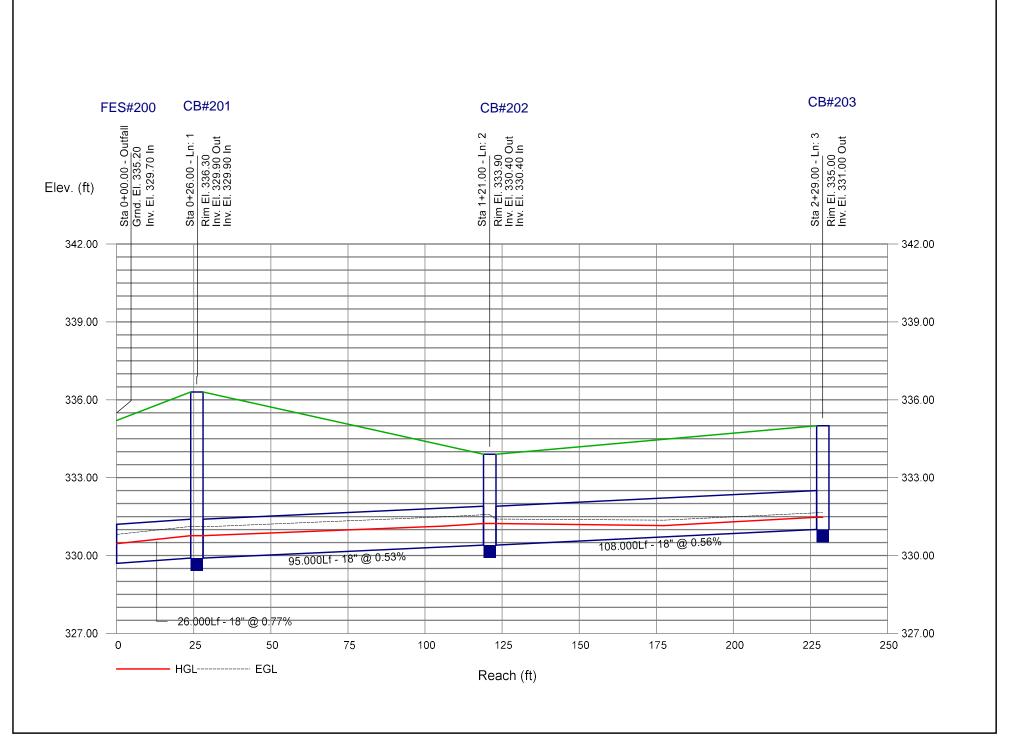
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Project File: 200 System.stm

Storm Sewer Inventory Report

Line		Aligni	nent			Flov	v Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	26.000	-83.058	Curb	0.37	0.00	0.00	0.0	329.70	0.77	329.90	18	Cir	0.012	1.49	336.30	
2	1	95.000			3.12	0.00	0.00	0.0	329.90	0.53	330.40	18	Cir	0.012	1.50	333.90	
3	2		-90.139		1.57	0.00	0.00	0.0	330.40	0.56	331.00	18	Cir	0.012		335.00	
Project	File: 200	System.stm	1									Number	of lines: 3			Date: 1	2/5/2023

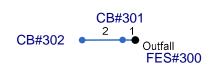
Structure Report


Struct	Structure ID	Junction	Rim		Structure			Line Out	:		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Curb-	336.30	Cir	4.00	4.00	18	Cir	329.90	18	B Cir	329.90
2		Combination	333.90	Cir	4.00	4.00	18	Cir	330.40	18	B Cir	330.40
3		Curb-	335.00	Cir	4.00	4.00	18	Cir	331.00			
Project I	File: 200 System.stm						л	umber of Struct	ures: 3		Run Date: 12/5/20	23

Storm Sewer Summary Report

₋ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		5.06	18	Cir	26.000	329.70	329.90	0.769	330.46	330.76	0.53	330.76	End	Curb-
2		4.69	18	Cir	95.000	329.90	330.40	0.526	330.76	331.23	n/a	331.23 j	1	Combination
3		1.57	18	Cir	108.000	330.40	331.00	0.560	331.23	331.47	n/a	331.47 j	2	Curb-
Project I	l File: 200 System.stm		<u> </u>						Number c	ı of lines: 3		Run l	Date: 12/5/	/2023
NOTES	: Return period = 10 Yrs. ; j - Line	e contains h	iyd. jump.						1			I		

Hydraulic Grade Line Computations


.ine	Size	Q			D	ownstre	am				Len				Upst	ream				Checl	ĸ	JL	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Sf	Enrgy Ioss	coeff (K)	loss (ft)
1	18	5.06	329.70	330.46	0.76	0.89	5.66	0.36	330.81	0.000	26.000	329.90	330.76	0.86**	1.06	4.80	0.36	331.12	0.000	0.000	n/a	1.49	0.53
2	18	4.69	329.90	330.76	0.86	1.01	4.44	0.34	331.10	0.000	95.000	330.40	331.23 j	0.83**	1.01	4.67	0.34	331.57	0.000	0.000	n/a	1.50	n/a
3	18	1.57	330.40	331.23	0.83	0.47	1.56	0.17	331.40	0.000	108.00	0331.00	331.47 j	0.47**	0.47	3.31	0.17	331.65	0.000	0.000	n/a	1.00	0.17
'roje	ect File: 2	200 Syste	em.stm											N	umber c	of lines: 3	3		Rur	Date: 1	2/5/202	3	

7-Eleven, Zebulon, NC Bowman North Carolina, Ltd.

Rational Ru	noff Coefficient	t "C"		
Catch Basin#301				
<u>Drainage Area (acres):</u> 0.04				
Proposed Land Uses:				
Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded	<u>Acres</u> 0.00 0.04 0.00 0.00	<u>% Site</u> 0% 100% 0% 0%	<u>Runoff "C"</u> 0.95 0.95 0.3 0.2	<u>"C"</u> 0.00 0.95 0.00 0.00
Total Area=	0.00	0% Cumulative "C" = i10= Q10=	0.2	0.00 0.95 7.21 0.30
Catch Basin#302				
<u>Drainage Area (acres):</u> 0.08				
Proposed Land Uses:				
Land Use Description Roofs Asphalt/Concrete Pavement Lawn Wooded	<u>Acres</u> 0.00 0.06 0.02 0.00	<u>% Site</u> 0% 70% 30% 0%	<u>Runoff "C"</u> 0.95 0.95 0.3 0.2	<u>"C"</u> 0.00 0.67 0.09 0.00
Total Area=	0.08	Cumulative "C" = i10= Q10=		0.76 7.21 0.46

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

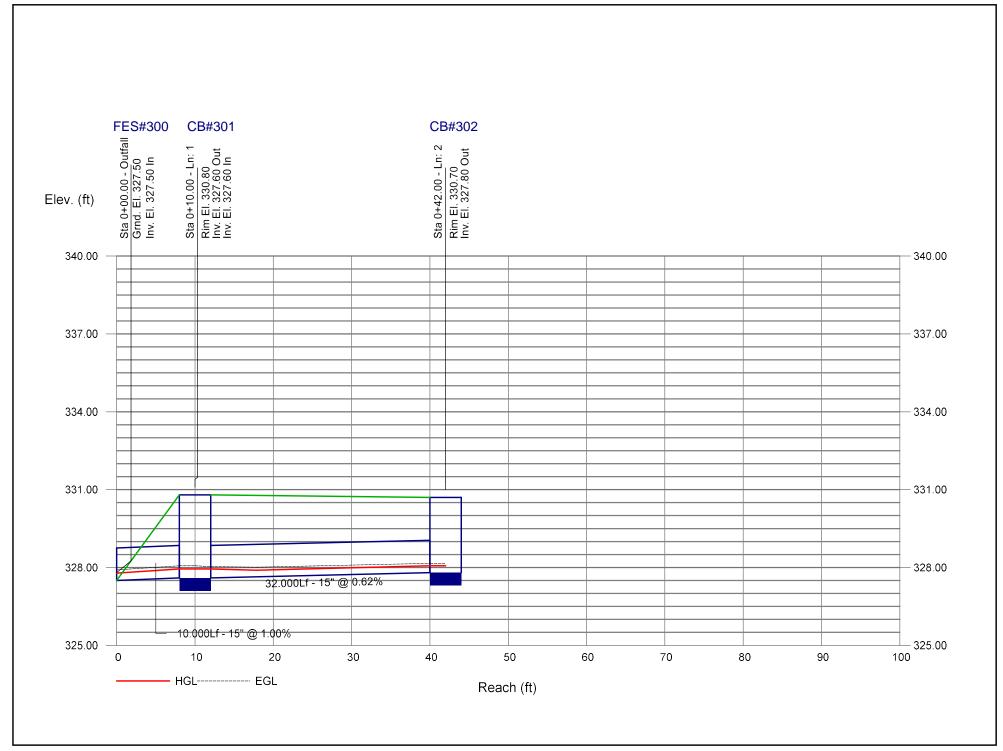
Project File: 300 System.stm	Number of lines: 2	Date: 12/5/2023
------------------------------	--------------------	-----------------

Storm Sewer Inventory Report

Line		Align	ment			Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	-
1	End	10.000	-179.32	\$Curb	0.31	0.00	0.00	0.0	327.50	1.00	327.60	15	Cir	0.012	0.50	330.80	
2	1	32.000	-0.954	Curb	0.47	0.00	0.00	0.0	327.60	0.62	327.80	15	Cir	0.012	1.00	330.70	
Project	t File: 300	System.stn	n									Number o	of lines: 2			Date: 1	2/5/2023

Structure Report

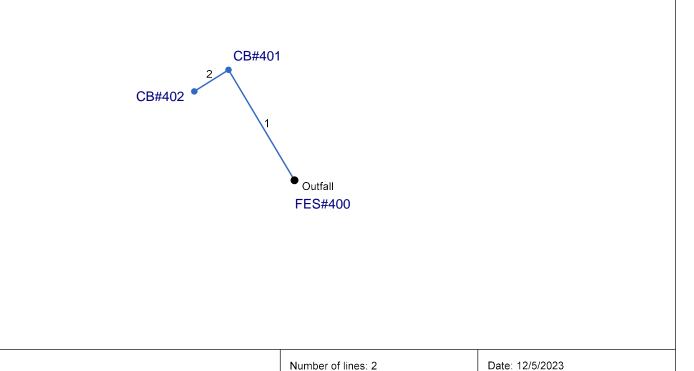
Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Curb-	330.80	Cir	4.00	4.00	15	Cir	327.60	15	Cir	327.60
2		Curb-	330.70	Cir	4.00	4.00	15	Cir	327.80			
Project	File: 300 System.stm						1	umber of Struct	ures: 2	F	Run Date: 12/5/20	23


Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		0.78	15	Cir	10.000	327.50	327.60	1.000	327.78	327.95	0.06	327.95	End	Curb-
2		0.47	15	Cir	32.000	327.60	327.80	0.625	327.95	328.07	n/a	328.07 j	1	Curb-
Project I	File: 300 System.stm	1					-		Number o	of lines: 2		Run I	Date: 12/5	/2023
NOTES	: Return period = 10 Yrs. ; j - Line	contains h	yd. jump.						1					

Hydraulic Grade Line Computations

ine	Size	Q			D	ownstre	am				Len				Upsti	ream				Chec	k	JL	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Sf	Enrgy Ioss		loss (ft)
1	15	0.78	327.50	327.78	0.28	0.21	3.76	0.12	327.91	0.000	10.000	327.60	327.95	0.35**	0.28	2.82	0.12	328.07	0.000	0.000	n/a	0.50	0.06
2	15	0.47	327.60	327.95	0.35	0.19	1.70	0.09	328.04	0.000	32.000	327.80	328.07 j	0.27**	0.19	2.45	0.09	328.16	0.000	0.000	n/a	1.00	0.09
	ect File: 3														umber c					Date: 1			


Storm Sewer Profile

7-Eleven, Zebulon, NC Bowman North Carolina, Ltd.

Rational F	Runoff Coefficient	t "C"		
Catch Basin#401				
Drainage Area (acres): 0.10				
Proposed Land Uses:				
Land Use Description	Acres	<u>% Site</u>	Runoff "C"	<u>"C"</u>
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.10	100%	0.95	0.95
Lawn	0.00	0%	0.3	0.00
Wooded	0.00	0%	0.2	0.00
Total Area=	0.10	Cumulative "C" =		0.95
		i10=		7.21
		Q10=		0.69
Catch Basin#402				
Drainage Area (acres): 0.32				
Proposed Land Uses:				
Land Use Description	Acres	% Site	Runoff "C"	"C"
Roofs	0.00	0%	0.95	<u>"C"</u> 0.00
Asphalt/Concrete Pavement	0.21	67%	0.95	0.64
Lawn	0.10	33%	0.3	0.10
Wooded	0.00	0%	0.2	0.00
Total Area=	0.32	Cumulative "C" =		0.74
		i10=		7.21
		Q10=		1.69

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

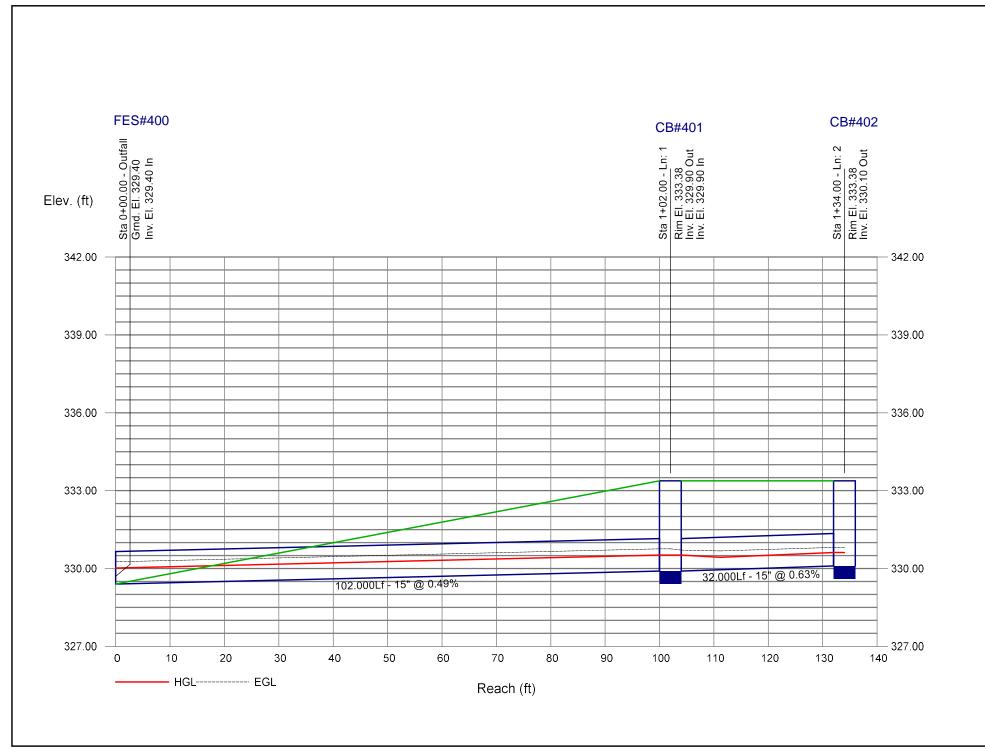
Project File: 400 System.stm Number of lines: 2	
---	--

Storm Sewer Inventory Report

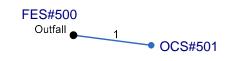
Line		Aligni	ment			Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	-
1	End	102.000	-120.75	Curb	0.69	0.00	0.00	0.0	329.40	0.49	329.90	15	Cir	0.012	1.50	333.38	
2	1	32.000	-91.522	Curb	1.69	0.00	0.00	0.0	329.90	0.63	330.10	15	Cir	0.012	1.00	333.38	
Project	l t File: 400	System.stm	<u>ו</u>									Number c	of lines: 2	1		Date: 1	2/5/2023

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Out	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Curb-	333.38	Cir	4.00	4.00	15	Cir	329.90	15	Cir	329.90
2		Curb-	333.38	Cir	4.00	4.00	15	Cir	330.10			
Project	File: 400 System.stm						r	Number of Struct	ures: 2	1	Run Date: 12/5/20	23


Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		2.38	15	Cir	102.000	329.40	329.90	0.490	330.01	330.52	n/a	330.52	End	Curb-
2		1.69	15	Cir	32.000		329.90	0.625	330.52	330.62	n/a n/a	330.62 j	1 1	Curb-
Project I	File: 400 System.stm								Number o	of lines: 2		Run I	Date: 12/5	/2023
NOTES	Return period = 10 Yrs. ; j - Line	contains h	yd. jump.											


Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	elev	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Sf	Enrgy Ioss (ft)	coeff (K)	loss (ft)
1	15	2.38	329.40	330.01	0.61	0.60	3.96	0.24	330.26	0.000	102.00	0329.90	330.52	0.62**	0.60	3.95	0.24	330.76	0.000	0.000	n/a	1.50	n/a
2	15	1.69	329.90	330.52	0.62	0.48	2.80	0.19	330.71	0.000	32.000	330.10	330.62 j	0.52**	0.48	3.54	0.19	330.81	0.000	0.000	n/a	1.00	n/a
Proj	ect File: 4	00 Syst	em.stm											N	lumber o	f lines: 2			Run	Date: ´	12/5/202	3	

Storm Sewer Profile

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

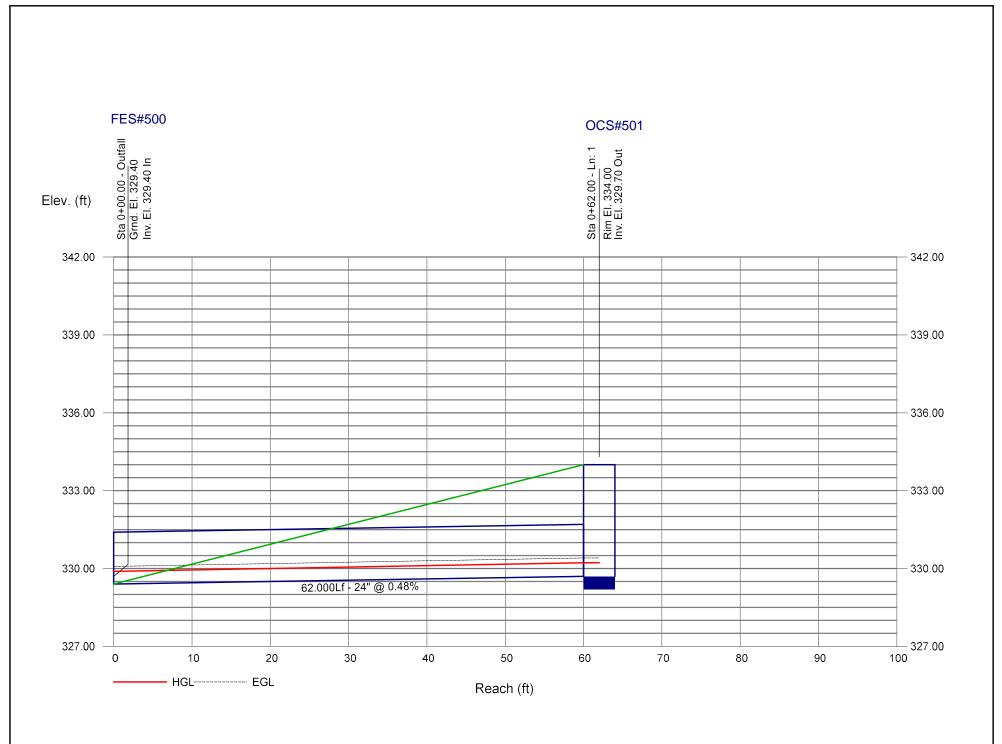
Project File: Pond Outfall.stm	Number of lines: 1	Date: 12/5/2023	
--------------------------------	--------------------	-----------------	--

Storm Sewer Inventory Report

Line		Align	ment			Flov	v Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	62.000	(deg) 7.392	МН	(cfs) 2.25	(ac) 0.00	0.00	0.0	21.01 (ft) 329.40	0.48	(ft) 329.70	24	Cir	0.012	1.00	334.00	
		d Outfall.str											of lines: 1			Date: 1	

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Manhole	334.00	Cir	4.00	4.00	24	Cir	329.70			
Project I	File: Pond Outfall.stm							Number of Struct	ures: 1	R	un Date: 12/5/202	3

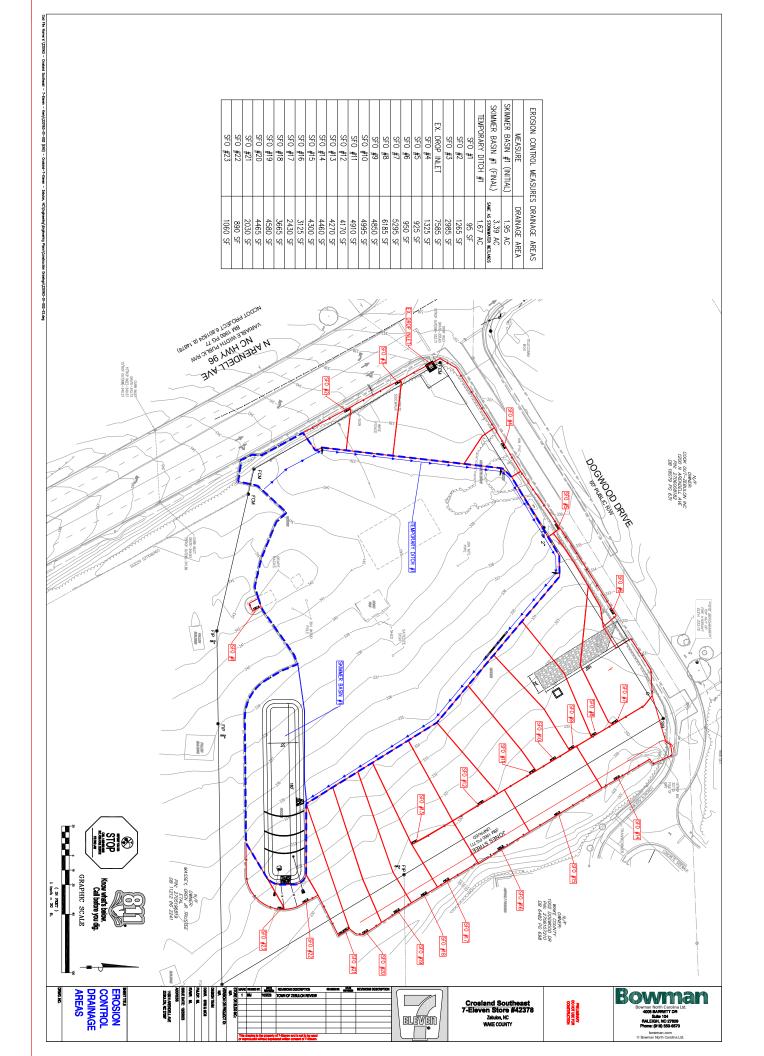

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		2.25	24	Cir	62.000	329.40	329.70	0.484	329.89	330.22	n/a	330.22	End	Manhole
Project	File: Pond Outfall.stm								Number of	of lines: 1		Runl	Date: 12/5/	2023
NOTES	: Return period = 10 Yrs.													

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upstr	eam				Chec	k	JL "	Minor
	(in)		Invert elev (ft)	elev	Depth (ft)			Vel head (ft)	elev	Sf (%)		Invert elev (ft)	elev		Area (sqft)		Vel head (ft)	EGL elev (ft)		Sf	Enrgy Ioss (ft)	coeff (K)	loss (ft)
1	24	2.25	329.40	329.89			3.76		330.08				330.22									1.00	n/a
Proj	ect File: F	Pond Out	fall.stm											 N	umber o	f lines: 1			Rur	Date: ´	12/5/202	3	

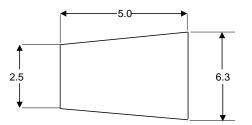
Storm Sewer Profile


7-Eleven, Zebulon, NC Bowman North Carolina, Ltd.

Rational F	Runoff Coefficient	: "C"		
Pipe Inlet #1				
Drainage Area (acres): 0.32				
Proposed Land Uses:				
Land Use Description	<u>Acres</u>	<u>% Site</u>	Runoff "C"	<u>"C"</u> 0.00
Roofs	0.00	0%	0.95	0.00
Asphalt/Concrete Pavement	0.00	1%	0.95	0.01
Lawn	0.32	99%	0.3	0.30
Wooded	0.00	0%	0.2	0.00
Total Area=	0.32	Cumulative "C" =		0.31
		i10=		7.21
		Q10=		0.71

APPENDIX D Erosion Control Calculations

Rip-Rap Apron Skimmer Basin Skimmer Sizing Anti-flotation Calculation Temporary Diversion Ditches


EROSION CONTROL CALCS (RIP-RAP CALCULATIONS)

Project Information

Project Name:	7-Eleven Zebulon, NC		
Project #:	220163-01-002		
Designed by:	MCB	Date:	10/4/2023
Revised by:	MCB	Date:	12/4/2023
Checked by:		Date:	
_		_	

Rip-Rap Apron#1

Pipe Diameter	d=	15	
Pipe Slope	S=	0.59	%
Manning's number	n=	0.013	
Flow	Q=	4.49	cfs
Velocity	V =	4.89	ft/s
Dissipator Dimensions *	Zone =	1	
	Stone Filling Class =	A	
	Entry Width ($2 \times D_0$) =	2.5	ft
	Length ($4 \times D_0$) =	5.0	ft
	Width (La + D_0) =	6.3	ft
	Min. Thickness =	12	inches
	Min. Stone Diameter=	3	inches

* All units are in feet

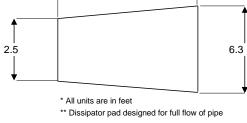
** Dissipator pad designed for full flow of pipe

Rip-Rap Apron#2

Pipe Diameter Pipe Slope	d= s=	24 0.77		
Manning's number	n=	0.013		
Flow	Q=	10.61	cfs	
Velocity	V =	6.82	ft/s	
Dissinctor Dimonsions *	Zone =	1		
Dissipator Dimensions *		A		
	Stone Filling Class = Entry Width ($3 \times D_0$) =	A 4.0	#	
	Length ($6 \times D_0$) =	8.0		
	Width (La + D_0) =	10.0		
	Min. Thickness =		inches	
	Min. Stone Diameter=	3	inches	
	ĺ	• 8	.0	
				A
	4 .0 ↓			10.0
		* All units are in fee	et	

 ** Dissipator pad designed for full flow of pipe

Rip-Rap Apron#3


	Pipe Diameter	d=	24	
	Pipe Slope	S=	0.5	%
	Manning's number	n=	0.013	
	Flow	Q=	3.519	cfs
	Velocity	V =	4.27	ft/s
	Dissipator Dimensions *	Zone =	1	
		Stone Filling Class =	A	
		Entry Width $(3 \times D_0) =$	4.0	ft
		Length ($6 \times D_0$) =	8.0	ft
		Width (La + D_0) =	10.0	ft
		Min. Thickness =	12	inches
		Min. Stone Diameter=	3	inches
		8.	.0	
				Т
3	4			10.0
	4.	.v		10.0

* All units are in feet

** Dissipator pad designed for full flow of pipe

Rip-Rap Apron#4

Pipe Diameter Pipe Slope Manning's number Flow Velocity	d= s= n= Q= V =	15 in 1 % 0.013 0.78 cfs 3.76 ft/s	
	Zone = Stone Filling Class = intry Width ($3 \times D_0$) = Length ($6 \times D_0$) = Width (La + D ₀) = Min. Thickness = Min. Stone Diameter=	1 2.5 ft 5.0 ft 6.3 ft 12 inches 3 inches	
	↑	5.0	-

Rip-Rap Apron#5

Pipe Diameter	d=	15	in	
Pipe Slope	S=	0.5	%	
Manning's number	n=	0.013		
Flow	Q=	2.38	cfs	
Velocity	V =	3.96	ft/s	
Dissipator Dimensions *		1		
	Stone Filling Class =	A		
	Entry Width ($3 \times D_0$) =	2.5	ft	
	Length ($6 \times D_0$) =	5.0	ft	
	Width (La + D_0) =	6.3	ft	
	Min. Thickness =	12	inches	
	Min. Stone Diameter=	3	inches	
	í	◀──── 5	.0 ——	
				▲
	4			
	2.5			6.3
	▼			
		* All units are in fee	,t	·•

** Dissipator pad designed for full flow of pipe

EROSION CONTROL CALCS (SKIMMER BASINS)

Project Information Project Name: 7-Eleven Zebulon, NC Project #: 220163-01-002 Date: 10/4/2023 Designed by: MCB Revised by: MCB Date: 11/29/2023 Checked by: Date: Skimmer Basin #1 Initial Drainage Area Total, A_T= 1.95 Ac Disturbed, A_D= 1.95 Ac Final Drainage Area Total, A_T= 3.39 Ac Disturbed, A_D= 3.39 Ac C = 25-year Runoff (Q25) 0.50 $T_c =$ 5.00 min l25 = 8.04 in/hr Q25 = 13.6 cfs SA = 425sf x Q25 Surface Area Required SA = 5,792 sf V_R = 1800 cf/Ac x A_D Volume Required $V_R =$ 6,102 cf Sediment Trap Dimensions L = 180 ft (Spillway Length) W = 33 ft (Spillway Width) D = 2.0 ft (Depth of Storage) Side Slopes = 2:1 $L_{top} =$ 188 ft $L_{top} =$ 172 ft W_{to} W_{bo} L_{bot} = $W_{top} =$ 41 ft L_{bot} = $W_{bot} =$ 25 ft L/W Ratio= 5.5 :1 (must be 2:1 to 6:1) Elevations **Description** Elevation Top of Berm 334.00 (allow 1ft freeboard above spillway flow height) Emergency Spillway 332.50 Sediment Storage 332.00 Cleanout Mark 331.00 (half of storage height) Bottom 330.00 5,940 Provided 5,792 SA₀= sf > V_P = 10,240.0 cf > 6,102 Emergency Spillway - 10 Year Storm l25 = 8.04 in/hr Q25 = 13.63 cfs h = 0.5 ft $C_w =$ 3 10 ft L_w=

Calculate Skimmer Size			
Basin Volume in Cubic Feet	10,240 Cu.Ft	Skimmer Size	2.5 Inch
Days to Drain*	3 Days	Orifice Radius	0.9 Inch[es]
		Orifice Diameter	1.9 Inch[es]
*In NC assume 3 days to drain			

Estimate Volume of Basin	Length	Width	_		
Top of water surface in feet	180	33	Feet	VOLUME	10240 Cu. Ft.
Bottom dimensions in feet	172	25	Feet		
Depth in feet	2		Feet		

EROSION CONTROL CALCS (SKIMMER BASINS)

Project Name:	7-Eleven Zebulon, NC	
Project #:	220163-01-002	
Designed by:	MCB	Date: 10/4/2023
Revised by:	MCB	Date: 11/29/2023
Checked by:		Date:

4' x 4' Outlet Structure			
Area:	16.0	sf	
Top of Basin Elev.:	332.0		
Bottom of Basin Elev .:	330.0		
Volume:	32.0	cf	(Water Displaced - Top of Pond to Bottom of Pond)
Weight:	1997	lbs	
Factor of Safety	1.20		
WT Req'd of Anti-Flotation Device:	2396	lbs	
Volume of Concrete Req'd:	16.0	cf	(Unit WT of Concrete = 150 pcf)
Volume Provided:	69.5	cf	(4'x4' riser x 2.0' = 32 cf, 5'x5' footing x 1.5' =37.5cf)

EROSION CONTROL CALCS (TEMPORARY DITCH #1)

Project Information Project Name: Project #:	7-Eleven 2 220163-01-0			
Designed by:	MCB		Date:	10/4/2023
Revised by:			Date:	
Checked by:			Date:	
Temporary Ditch #1				
Drainage Area	Total, A _T =	1.67 Ac		
25-year Runoff (Q ₂₅)	C = T _c =	0.50 5.00 min		
	I ₂₅ =	8.04 in/hr	•	
	Q ₂₅ =	6.7 cfs		

North American Green 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0

CHANNEL ANALYSIS

> > > <u>Temporary Ditch #1</u>

Name	Temporary Ditch #1
Discharge	6.7
Channel Slope	0.009
Channel Bottom Width	1
Left Side Slope	2
Right Side Slope	2
Low Flow Liner	
Retardence Class	C 6-12 in
Vegetation Type	None
Vegetation Density	None
Soil Type	Sandy Loam (GM)

DS75

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Underlying Substrate	Straight	6.7 cfs	2.55 ft/s	0.92 ft	0.035	1.51 lbs/ft2	0.29 lbs/ft2	5.27	STABLE	D
DS75 Unvegetated	Straight	6.7 cfs	2.55 ft/s	0.92 ft	0.035	1.6 lbs/ft2	0.52 lbs/ft2	3.09	STABLE	D