StorageMax 901 Proctor

Zebulon, NC Wake County

STORMWATER MANAGEMENT ANALYSIS

July 5, 2023 Revised: March 8, 2024

Prepared for:

Robert High Development, LLC 324 Greenville Ave. Wilmington, NC 28403

StorageMax

Stormwater Management Analysis

Project Name: StorageMax

Project Address: 901 Proctor Ave.

Zebulon, NC

Pins: 2706217463

Latitude: 35.840297 Longitude: -78.315683

Zoning: Heavy Commercial (HC)

River Basin: Neuse

Watershed: Moccasin Creek

HUC: 03020203

Developer: Robert High Development, LLC

324 Greenville Ave. Wilmington, NC 28403

Telephone: (919) 604-0505

Email: Storit@AOL.com

Site Description

The project consists of a single parcel located at the intersection of Proctor Avenue and Shepard School Road near downtown Zebulon. The lot is approximately 6.40 acres (278,836 sq feet). The parcel is vacant with grassy vegetation and wooded area along the property lines. There is 0 sq ft of existing impervious area on the site. The project will consist of commercial buildings and the impervious area will be 3.64 acres, or approximately 56% of the gross site.

Road widening along Shepard School Road is included with the project as a requirement of the Town of Zebulon and the impervious area is approximately 0.40 acres. The BMP design accounts for the impervious area within the right of way.

The site is in the Neuse River Basin, Moccasin Creek Watershed and subject to those rules regarding nutrient management and post storm water runoff.

The site does not have an area of wetlands and is not located within a flood zone as noted per FEMA map 3720270600K, Dated July 19, 2022. However, there is an intermittent stream located along the Southeast portion of the site and an offsite pond on an adjacent north parcel. No grading activities or disturbance is planned within the buffers.

Based on the Wake County SCS soils map (attached) the onsite soils are primarily Appling Series (ApB2), soil group B, throughout the tract. The Appling Series soil type is considered to have fair infiltration and surface runoff medium based on information in the Soil Survey.

Seasonal High Water Table (SHWT)

A soils investigation was done to determine the SHWT and the results attached within the report from Protocol Sampling Services, Inc.

The BMP Manual note the following.

BIORETENTION MDC 1. SEPARATION FROM THE SHWT. The lowest point of the bioretention cell shall be a minimum of two feet above the SHWT. However, the separation may be reduced to no less than one foot if the applicant provides a hydrogeologic evaluation prepared by a licensed professional

The area below the bioretention device will be over excavated to provide the allowed separation as noted in the BMP manual.

Proposed Development

The stormwater analysis considers a proposed development that will include commercial buildings on the site.

The proposed stormwater facility for the project consists of one bioretention device. Drainage from the majority of the property will be collected within the storm pipe system and routed towards the BMP. The device is designed in accordance with NCDEQ BMP (MDC) Manual, and will manage the 1,2, and 10 year, 24-hour storm events as noted below. The post development runoff from the noted storm events is less than the pre-development rates for the site.

The proposed BMP will capture the runoff from the majority of impervious area from the lot. However, a small portion of the site's impervious area, at the driveway entrance, does not drain towards the device; however, the device has been designed to treat all the impervious area as a part of the WQV and right of

way. The total impervious associated with the development has been accounted for treatment within the Bioretention device.

Methodology (Peak Flow and Nutrient Management)

The project is located within the Town of Zebulon's / Wake County permitting authority, and within the Neuse River watershed and the project is subjected to those rules. The Town of Zebulon's stormwater requirements as noted below. The project is considered a High-Density project.

- "(D) Development standards for high-density projects. High-density projects shall implement stormwater control measures that comply with each of the following standards, in addition to the general standards found in § 151.36.
- (1) The measures shall control and treat runoff from the first inch of rain. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.
- (2) All structural stormwater treatment systems used to meet these requirements shall be designed to have a minimum of 85% average annual removal for total suspended solids (TSS).
- (3) All development and redevelopment projects shall provide permanent on-site BMPs to lower the nitrogen export amounts as part of the stormwater management plan and accompany the land-disturbing plan submittal. BMPs are to be in accordance with and as specified in the Design Manual.
- (4) Structural and non-structural BMPs shall be used to ensure there is no net increase in peak flow leaving the site from the pre-development conditions for the one-year, 24-hour storm. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.
- (5) General engineering design criteria for all projects shall be in accordance with 15A NCAC 2H .1008(c), as explained in the Design Manual.
- (6) All development and redevelopment shall be located outside the riparian buffer zone and the flood protection zone. These zones shall be in accordance with the following provisions:
- (a) Except where other applicable buffer standards are more restrictive, the riparian buffer zone shall extend a minimum of 50 feet landward of all perennial and intermittent surface waters. The most restrictive standards shall apply.
- (b) The riparian buffer zone shall remain undisturbed unless otherwise permitted by this section.
- (c) The flood protection zone shall extend throughout the FEMA 100-year floodplain as identified on the current Flood Insurance Rate Map (FIRM) published by FEMA. The flood protection zone shall remain undisturbed unless otherwise permitted by this section.
- (d) No development or redevelopment is permitted within the riparian buffer zone or the flood protection zone except for stream bank or shoreline restoration or stabilization, water dependent structures, and public or private projects such as road crossings and installations, utility crossings and installations, and greenways, where no practical alternatives exist.
- (e) Permitted activities within the riparian buffer zone and the flood protection zone shall minimize impervious coverage, direct runoff away from surface waters to achieve diffuse flow, and maximize the utilization of non-structural BMPs.

- (f) Where the riparian buffer zone and the flood protection zone both are present adjacent to surface waters, the more restrictive shall apply.
- (7) The approval of the stormwater permit shall require an enforceable restriction on property usage that runs with the land, such as recorded deed restrictions or protective covenants, to ensure that future development and redevelopment maintains the site consistent with the approved project plans. Buffer widths and locations shall be clearly delineated on all plans, final plat, and as-builts."

Peak flow – The methodology used to determine the runoff is the SCS method.

Time of Concentration used in the analysis is 5 minutes.

Per Kirpich Equation the pre development Tc rates are below the 5 minute min. The post to the BMP is approximately 8 minutes. However, 5 minutes was used to be conservative in the BMP design and flow rates (see attached graph).

The POI (point of interest) for the project site is at the southwest corner of the site at the stream crossing Shepard School Road.

Based on the proposed stormwater management for the project no adverse impact is anticipated on adjacent parcels. The BMP system and drainage point from the project does not encroach on another property with new development and grading operations. The impacted property is owned by the same company involved with this projected.

Using the SCS Method, the modeling of the BMP at the POI provides the following results in peak flow management.

Total site peak runoff in cfs without the BMP (as noted in the attached Hydraflow report) is as follows.

Storm Event	Pre	Post
Q1	6.47	17.10
Q2	10.29	22.51
Q10	23.44	38.89

Total site peak runoff in cfs through the BMP is as follows.

Storm Event	Pre	Post
Q1	6.47	5.28
Q2	10.29	7.05
Q10	23.44	23.01

Nutrient Management

The BMP provides treatment for drainage area within the project and also provides the TSS removal of 85%.

O&M Manual

A copy of the project's O&M manual is attached for the Bioretention device.

Flood Hazard Area (Soils)

There are Flood Hazard Soils located on site (see attached GIS map) and are located within the stream buffered area. However, no grading or development is planned within the NRB area.

Wetlands

There are no wetlands located on site. However there is a buffered pond (north and offsite) and a stream along the southern edge (see attached Stream Determination Letter)

Q100 Backwater Effect at BMP (13. Z Wake County Checklist)

There is no storm pipe from the project that will discharge into the ROW. The BMP discharges directly towards a stream on the southern portion of the project site.

Downstream Impact Analysis (DIA)

The Town of Zebulon requires a DIA to be performed with the 10% rule.

- (A) Downstream impact analysis.
- (1) The downstream impact analysis must be performed in accordance with the "10% rule," and a copy of the analysis must be provided with the permit application. The purpose of the downstream impact analysis is to determine if the project will cause any impacts on flooding or channel degradation downstream of the project site. The analysis must include the assumptions, results and supporting calculations to show safe passage of post-development design flows downstream. This analysis shall be performed at the outlet(s) of the site, and downstream at each tributary junction to the point(s) in the conveyance system where the area of the portion of the site draining into the system is less than or equal to 10% of the total drainage area above that point.
 - (2) The typical steps in the application of the 10% rule are:
- (a) Using a topographic map, determine the point downstream where the proposed site equals 10% of the total drainage area, called the 10% point. Identify all tributary junctions between the downstream site boundary and the 10% point. All points identified, as well as the outlet of the site, are known as 10% rule comparison points.

- (b) Using a hydrologic model with existing land uses, determine the predevelopment peak runoff rate (cfs) for the ten-year design storm event at each comparison point.
- (c) Insert the proposed site design and proposed BMPs into the land uses and determine the post-development peak runoff rate for the ten-year design storm at each comparison point.
- (d) If the post-development peak discharge rate is equal to or less than predevelopment conditions at all comparison points, no further analysis is required.
- (e) If the ten-year post-development peak discharge rate is greater than the predevelopment peak discharge rate at any comparison point, then one of the following actions must be taken:

DIA Results

The POI for is located downstream from the parcel and as shown on the attached maps there are two farm ponds prior to the evaluated stream ditch. Using the SCS method; see attached for supporting calculations.

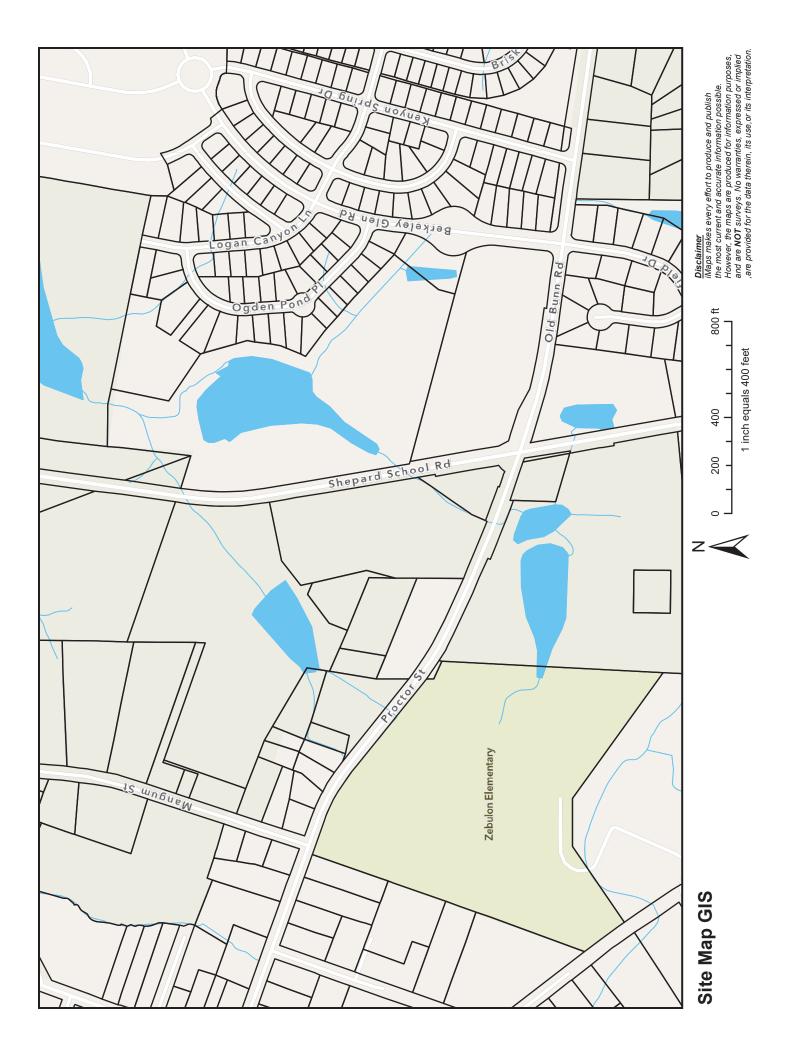
The entire drainage area to the POI is 1564 acres and the area in review is approximately 65.16 acres and project site encompass 6.5 acres.

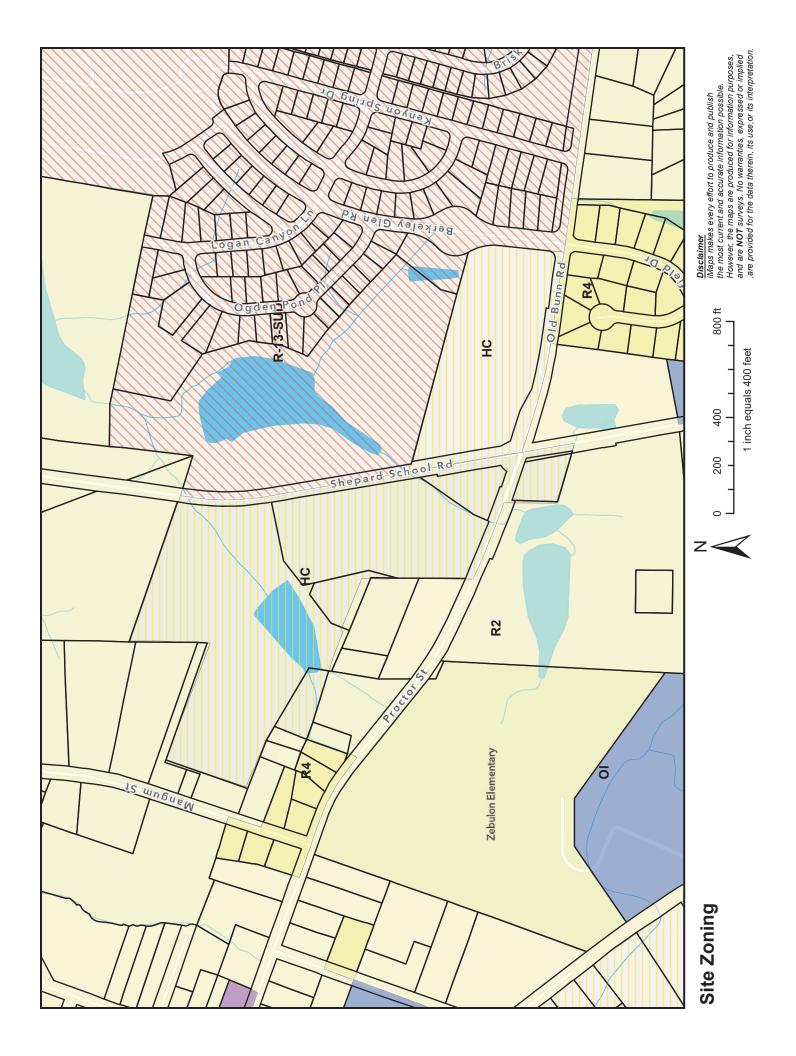
Based on the Hydraflow analysis the flow rate for the initial evaluation is 283.61 cfs.

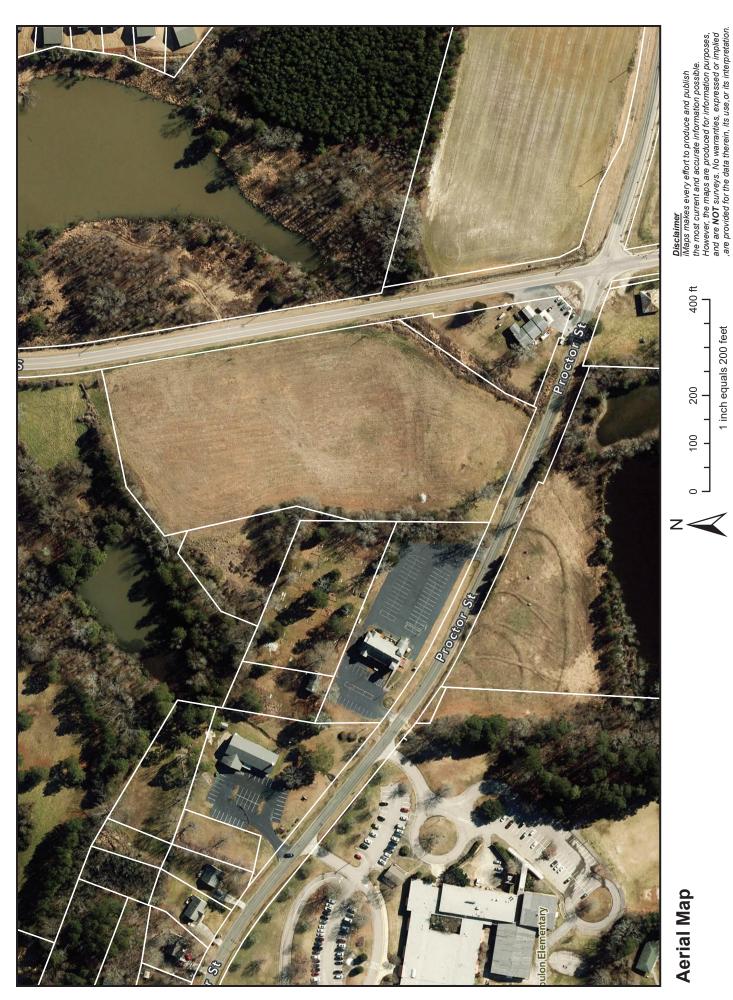
Removing the site area from the total acreage in review is 58.66 ac with a flow rate of 247.06 cfs.

Incorporating the Q10 flow rate after the BMP is 20.60 cfs.

Total Post flow at the POI is 247.06 + 20.60 = 267.66 cfs.

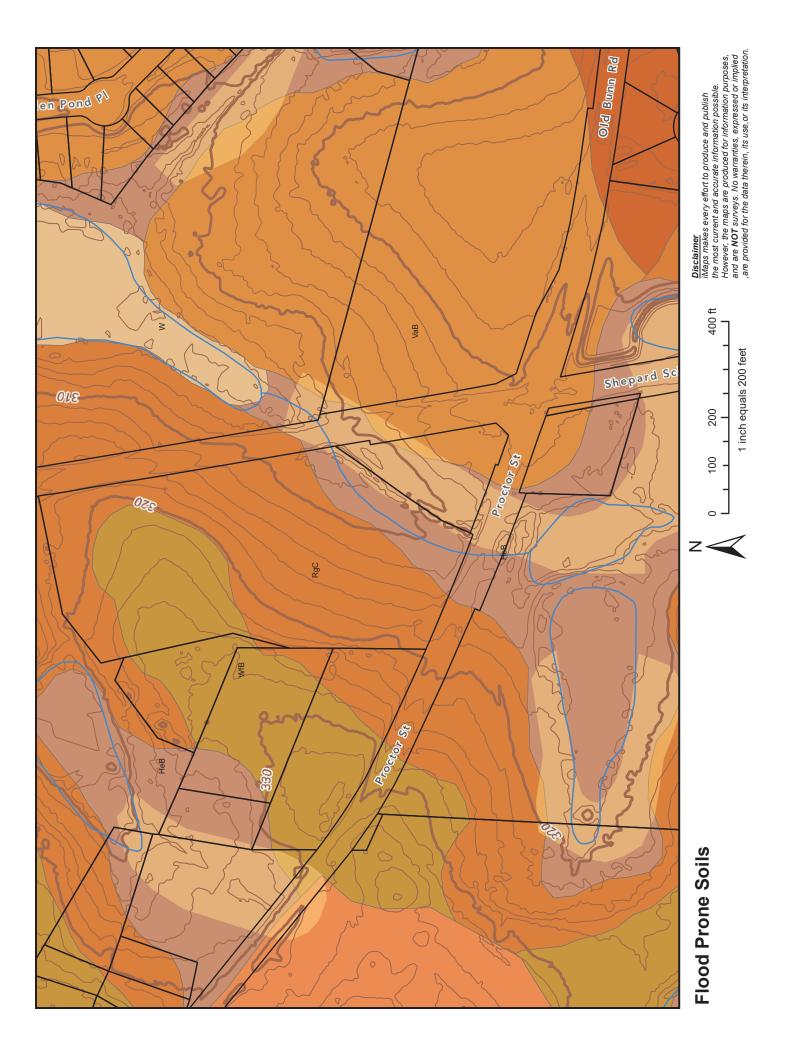

Results: 267.66 cfs < 283.61 cfs.

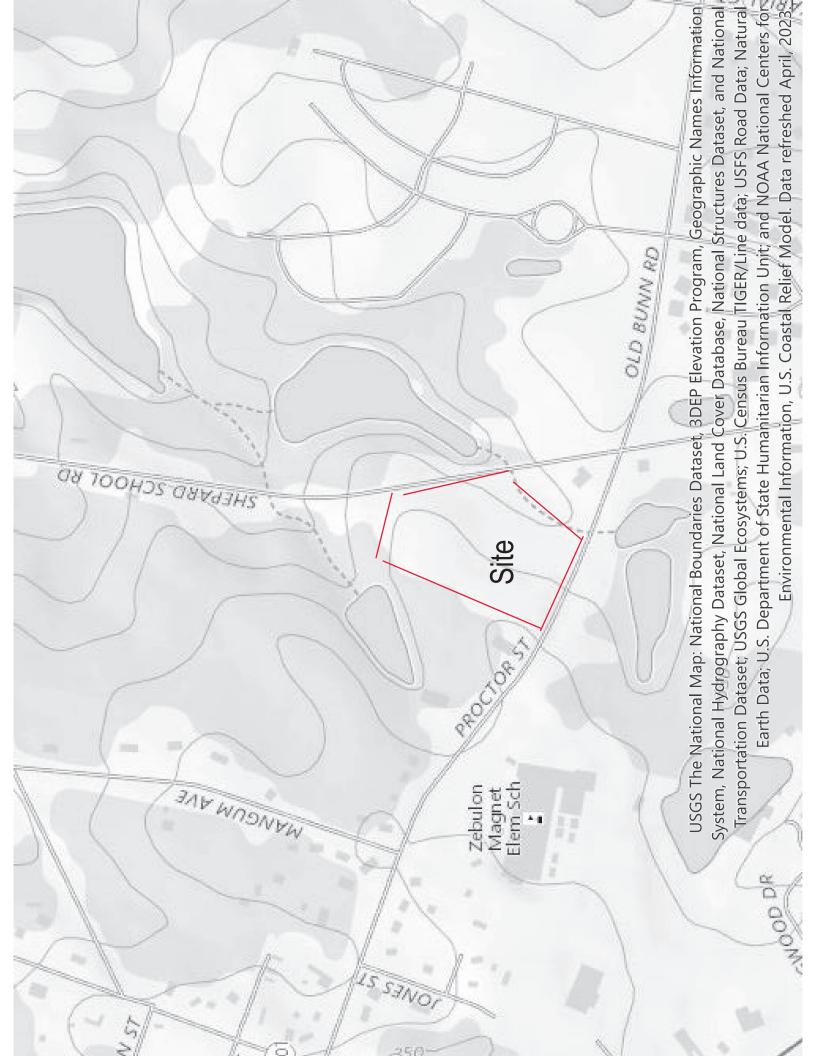

As a result, the flow rate after development is less than predevelopment.


Attachments.

Stormwater Summary

•	Square Feet	Acres
Overal Site Gross Area	294,161.00	6.75
ROW Shepard	12,756.00	0.29
ROW Proctor	2,569.00	0.06
Site (Net)	278,836.00	6.40
Pre Development		
Impervious	0.00	0.00
Managed Pervious	283,140.00	6.50
Total		6.50
Post		
Parking Lot / Sidewalk Site	52,685.00	1.21
Roof	106,000.00	2.43
Open Landscape	120,000.00	2.75
Total	278,685.00	6.40


Aerial Map


400 ft

200

100

1 inch equals 200 feet

National Flood Hazard Layer FIRMette

1:6,000 AREA OF MINIMAL FLOOD HAZARD 9FEET46 **िर्देश** SITE ZEBULONETI 1,500 TOWN OF ZEBULON 500 370246 250

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

HAZARD AREAS SPECIAL FLOOD

With BFE or Depth Zone AE, AO, AH, VE, AR Without Base Flood Elevation (BFE)

0.2% Annual Chance Flood Hazard, Areas Regulatory Floodway

depth less than one foot or with drainage of 1% annual chance flood with average areas of less than one square mile Zone X Future Conditions 1% Annual

Area with Flood Risk due to Levee Zone D Area with Reduced Flood Risk due to Chance Flood Hazard Zone X Levee. See Notes. Zone X

OTHER AREAS OF FLOOD HAZARD

NO SCREEN Area of Minimal Flood Hazard Zone X

Effective LOMRs

Area of Undetermined Flood Hazard Zone D

OTHER AREAS

Channel, Culvert, or Storm Sewer

STRUCTURES 1111111 Levee, Dike, or Floodwall

Cross Sections with 1% Annual Chance Water Surface Elevation

Base Flood Elevation Line (BFE) Coastal Transect Limit of Study um 513 mm

Coastal Transect Baseline

OTHER **FEATURES**

Hydrographic Feature

Digital Data Available

No Digital Data Available

Unmapped

MAP PANELS

point selected by the user and does not represent an authoritative property location. The pin displayed on the map is an approximate

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or The flood hazard information is derived directly from the was exported on 6/2/2022 at 8:36 PM and does not become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Reports

ROY COOPER Governor ELIZABETH S. BISER Secretary RICHARD E. ROGERS, JR. Director

December 15, 2023

DWR Project RR0 23-401 Wake County

StorageMax Shepard School, LLC 2700 Gresham Lake Road Raleigh, NC 27615

Subject: On-Site Determination for Applicability to the Neuse Buffer Rules (15A NCAC 02B .0714)

Project Name: StorageMax

Site Address / Location: 901 Proctor St., Zebulon, NC 27597

Dear Owners:

On December 15, 2023, Cheng Zhang conducted an on-site review of features located on the subject property with the request of Dylan Warren of Terracon Consultants to determine the applicability of the above-noted state regulations.

The Division of Water Resources has determined that streams listed in the table below and identified on the attached maps are shown on either the most recently *published* NRCS Soil Survey of Wake County and the USGS National Map at a scale that incorporates the National Hydrography Dataset High Resolution data at 1:24,000 scale. Streams that are listed as "Subject" on the below table have been located on the ground at the site and possess characteristics that qualify them to be at least intermittent streams in accordance with the NC Stream Identification Manual v.4.11 and therefore subject to the Neuse Buffer Rules. Please be aware that features identified as "not subject" may be considered jurisdictional according to the US Army Corps of Engineers and subject to the Clean Water Act.

Closest Stream: Little Lick Creek

Feature ID	E/I/P/ Other	Subject to Buffer Rules	Start @	Stop @	Depicted on Soil Survey	Depicted on USGS Topo
Feature A	I	Yes			Yes	No
Pond 1		Yes			Yes	Yes

E = Ephemeral, I = Intermittent, P = Perennial, NP = Not Present, N/A=Not Applicable

This on-site determination shall expire five (5) years from the date of this letter. The owner (or future owners) should notify the Division (and other relevant agencies) of this decision in any future correspondences concerning this property. Landowners or affected parties that dispute this determination made by the Division may request a determination by the Director of Water Resources. This determination is final and binding, unless an appeal request is made within sixty (60) calendar days of the date of this letter to the Director in writing.

If sending via U.S. Postal Service:

Stephanie Goss - DWR 401 & Buffer
Permitting Branch Supervisor
1617 Mail Service Center
Raleigh, NC 27699-1617

If sending via delivery service (UPS, FedEx, etc.)
Stephanie Goss - DWR 401 & Buffer
Permitting Branch Supervisor
512 N Salisbury St.
Raleigh, NC 27604

This letter only addresses the applicability of the stated regulations on the features identified on the subject property and/or within the proposed project area. This letter does not approve any activity within buffers or within waters of the state. There may be other regulated waters, streams or other features located on the property that do not appear on the maps or table referenced above. Any waters, streams, or other features on the site, including the features identified in this letter, may be considered jurisdictional according to the US Army Corps of Engineers and subject to the Clean Water Act. If you have any additional questions or require additional information, please contact Cheng Zhang at 919-791-4259 or cheng.zhang@deq.nc.gov. This determination is subject to review as provided in Articles 3 & 4 of G.S. 150B.

Sincerely,

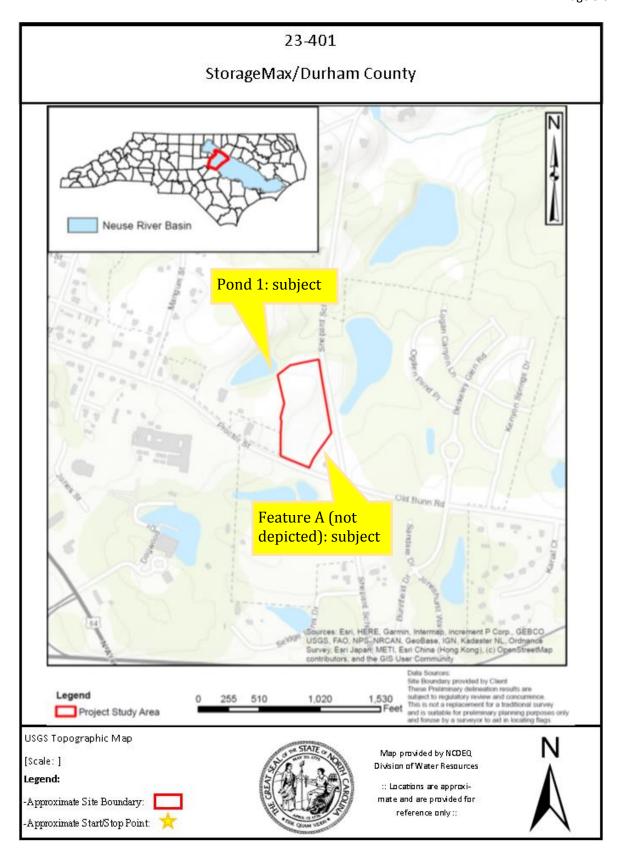
Docusigned by:

Varussa E. Manuel

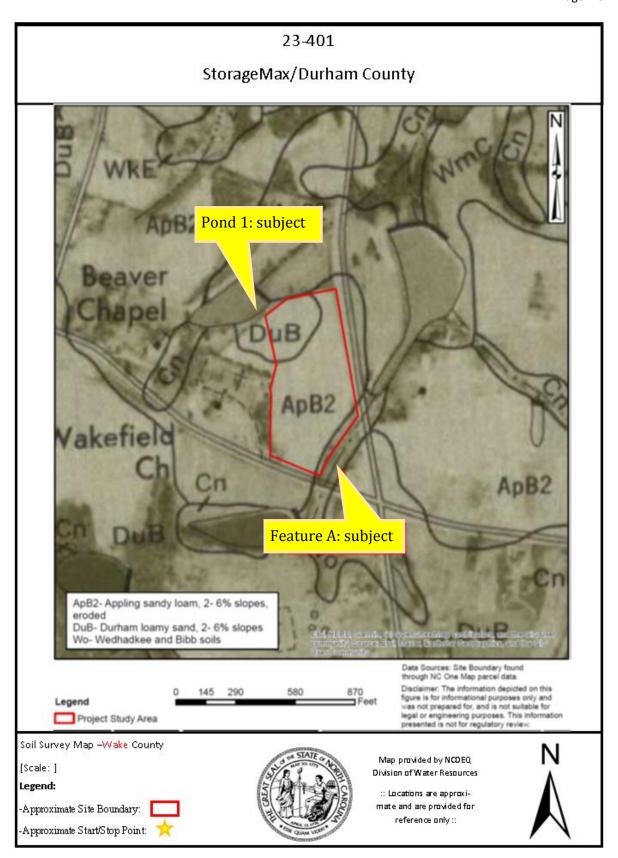
B2916E6AB32144F...

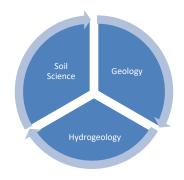
Vanessa E. Manuel, Assistant Regional Supervisor Water Quality Regional Operations Section Raleigh Regional Office Division of Water Resources

Enclosures: USGS Topographical Map


published NRCS Soil Survey

Electronic cc: Dylan Warren- Terracon Consultants


USACE Raleigh Regulatory Field Office


Laserfiche

4114 Laurel Ridge Drive Raleigh, North Carolina 27612 Protocol Sampling Service, Inc.
"Experts in Environmental Compliance"
(919) 210-6547

Protocolsampling@yahoo.com Environmentalservicesnc.com

October 2, 2023

Mr. Keith P. Gettle, P.E. Gettle Engineering & Design, PLLC 3616 Waxwing Court Wake Forest, North Carolina 27587

Re: Storm Water Management Soil Investigation
Storage Max

Storage Max 901 Proctor Street Zebulon, Wake County, North Carolina Protocol Project #23-67

Dear Mr. Gettle:

The following Soil Investigation is submitted to assist in a site assessment for storm water management improvements for a Storage Max facility located at 901 Proctor Street in Zebulon, Wake County, North Carolina.

SITE HISTORY AND PHYSICAL CHARACTERISTICS

The subject property was formerly occupied by a residential structure and is now pasture. Light residential development and farmland surrounds the subject property. Protocol Sampling Service, Inc. of Raleigh, North Carolina was hired to perform an investigation to identify the depth to seasonal high-water table in the location of the proposed storm water Bioretention BMP.

SOIL INVESTIGATION

The field survey was conducted on Wednesday May 31, 2023. One (1) soil boring was advanced in the center of the proposed Bioretention BMP to a depth of 60-inches below land surface (bls) with a hand auger (Site Plan – attached). Soil color was determined with a Munsell Soil Color Chart. The presence of fill or other disturbances, the depth to the seasonal high-water table, soil structure and consistence were noted. The boring was also checked for reduced colors, an anaerobic smell or obvious soil wetness.

FINDINGS - Soil

- The proposed Bioretention Basin is located on the southern section of the property and was found to have an apparent depth to seasonal high-water table of 46-inches bls.
- Saprolite (weathered rock) was encountered at a depth of 50-inches bls in the proposed Bioretention Basin. Ground water was not encountered in the soil boring.

• By excavating into the saprolite and backfilling with clean sand a seasonal high-water table of 5.0-feet bls should be considered the depth to SHWT at an elevation of 306.0' (311.00' estimated surface elevation) with a depth to rock and groundwater of greater than 6-feet bls.

The findings presented herein are based on the site conditions observed during performance of the field survey on May 31, 2023.

Please call me at (919) 210-6547 if you have any questions or need further assistance.

Sincerely,

Protocol Sampling Service, Inc.

David E. Meyer, N.C.L.S.S.

President

cc: file

Storage Max Soil Profile Description – Durham

Soil Profile Description

- A1 0-9 inches; grayish brown (10YR 5/2) loamy sand; granular structure, very friable
- A2 9-15 inches; brown (10YR 5/3) loamy sand; granular structure, very friable
- Bt1 15-33 inches; strong brown (7.5YR 5/8) sandy clay loam; subangular blocky structure; friable
- Bt2 33-50 inches; brownish yellow (10YR 6/6) clay loam; subangular blocky structure; friable
- C 50-60 inches; gray and black sandy loam saprolite

Soil Series: Durham Landscape: Piedmont Landform: upland divide

Parent Material: Gneiss & schist Drainage Class: Well drained Particle Size Class: clay Temperature Regime: thermic


Subgroup Classification: thermic Typic Hapludult

Examination Method: auger boring

Date: May 31, 2023 Weather: 75° and sunny Investigator: David Meyer

Shwt: 46"

Measured water table depth: >60"

DO NOT USE FOR CONSTRUCTION

3616 Waxwing Court,
Wake Forest, North Carolina 27587
(919) 210-3934 Firm License P-2538

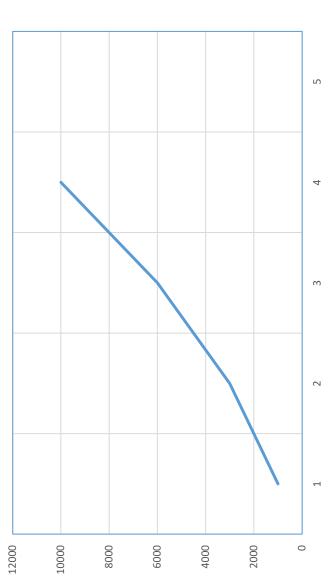
Grading Overall
StorageMax
901 Proctor Street
Zebulon, Wake County, North Carolina

Project No. 23001

5

Bioretention Design

Curve Number Analysis


Project Calculated By Date Location Checked By Revised

			Total Site CN (no offsite)				Drainage to BMP (inc offsite drainage)				
	Soils Data			Pre-Dev	elpoment	Post Dev	elopment	Ву	pass		То ВМР
	Soil Group Cover Description		CN	Area	CN x Area	Area	CN x Area	Area	CN x Area	Area	CN x Area
	NA	Impervious Cover									
		Roof/Concrete	98	0.00		2.30	225			2.30	225
		Asphalt Pavement	98	0.00		1.34	131	0.05	5	1.29	126
	B Pervious/Semi-Perv Cover										
		Lawn, Good Condition	61					1.21	74		
		Woods, Fair Condition	60	0.40	24	0.40	24	0.40	24		
		Grass, Fair Condition	69	6.00	414	2.36	163			1.71	118
1 acre lots (with 11% c	onnected, 89% unconnected)	65								
		Gravel	85								
	С	Pervious/Semi-Perv Cover									
		Lawn, Good Condition	74								
		Woods, Fair Condition	73								
		Brush, Good Condition	65								
		Grass, Fair Condition	79								
1 acre lots (with 11% c	onnected, 89% unconnected)	76								
		Gravel	89								
	D	Pervious/Semi-Perv Cover									
		Lawn, Good Condition	80								
		Woods, Good Condition	77								
		Brush, Good Condition	73	0.00		0.00					
		Landscape	79								
		Gravel	91								
		Total		6.40	438	6.40	544	1.66	103	5.30	470
		Weighted Curve Number			68		85		62		89

Calculate Stage-Storage of Bioretention Basin

S, Accumulated	Volume (cf)		0 Top of Media = 311	13,870 <i>El 310</i>	26,565 <i>El 309</i>		0 Top of Media	15,388 1" storm volume pool elevation	23,779 Top of Riser	32,645 Emergency Spillway	-2,817,689 Top Of Dam
Incremental	Volume (cf)		0	13,870	12,695		0	15,388	8,391	8,867	(2,850,335)
Contour Area	(sf)		14,465	13,274	12,116		14,465	16,310	17,254	18,213	ı
00	Contour		0	Н	2		311	312	312.5	313	
	Stage	Media Volume	0.0	1.0	2.0	Water Volume	0.0	1.0	1.5	2.0	2.0

S, Accumulated Volume (cf) by Stage

Calculate the runoff coefficient, Rv Impervious portion of

of
portion
npervious

Includes .40 Acres impervious in the Righ of Way	$I_A=(Impervious\ portion\ of\ drainage\ area\ (acre)$		$R \nu = 0.05 + 0.9 \times I A$
4.04 acres	5.76 acres	%02	0.68
drainage area	Drainage area	Ψ	R

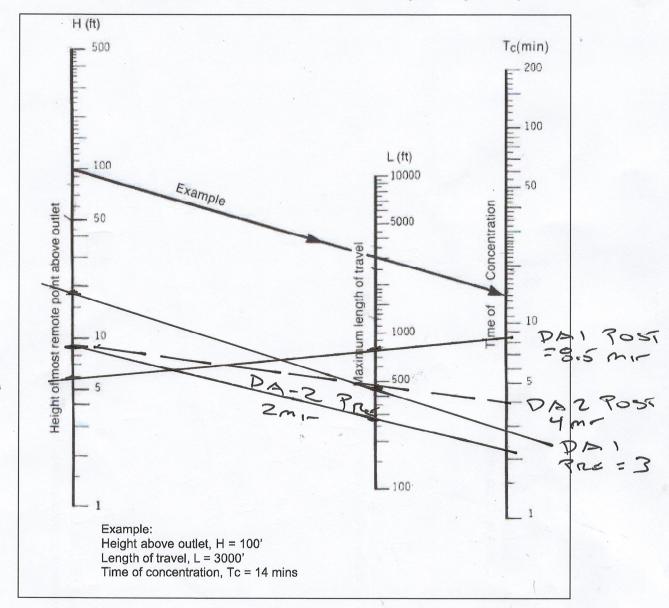
ie area (acre)					19.51		
$I_A=(Impervious\ portion\ of\ drainage\ area\ (acre))$		$R_{\nu} = 0.05 + 0.9 \times I_{A}$		Design storm rainfall depth	Watershed area	$V=3630\times R_D\times R_v\times A$	·
5.76 acres	70%	89:0	ne of runoff to be controlled, V	1 inch	5.76 acres	14,244 cf	15,388 cf
Drainage area	۷	Rv	Calculate the volume of	RD	4	V required	V provided

Underdrain

	1" / hour (safety factor of 10)	Diameter of pipe	Roughness factor	internal slope	See table 5-1
26,565 cu ft	3.07 cfs	12.09 in	0.011	0.005 ft/ft	14 (4" pipes req)
Media Volume	Q (1" /hr)	٥	۵	S	# of Pipes Rea'd 14 (4" pipes rea)

		,	0.5
		7	8.7
		9	7.75
		2	7.22
4	10.13	4	99.9
3	9.11	8	5.95
2	7.84	7	5.13
of 6" pipes	If D is less than # of 6" pipes	# of 4" pipes	if D is less than

StorageMax


Riser forBioretention Device

Buoyancy Protection

Ground elevation at wet well (feet)	311.0	
Maximum groundwater elevation (feet)	306.0	
Wet well top elevation (feet)	312.5	
Wet well invert elevation (feet)	308.0	
Thickness of wet well wall (inches)	0.5	
Thickness of wet well top (inches)	0.1	
Percent of top deducted for hatch opening	85	
Thickness of wet well floor (inches)	18.0	
Length of wet well base extension (inches)	12.0	
Dry unit weight of soil (pcf)	120.0	
Unit weight of water (pcf)	62.4	
Unit weight of water (pcf)	150.0	
office weight of concrete (pcr)	130.0	
Buoyant force, with empty wet well		
Submerged volume of wet well interior (cf)	-157	
Submerged volume of wet well walls (cf)	-3	
Submerged volume of floor & base ext. (cf)	172	
Submerged volume of wet well top (cf)	0	
Total volume of displaced water (cf)	12	
Total weight of displaced water (lbs)		768
, , ,		
Downward forces		
Volume of wet well structure (cf)	178	
Volume of concrete added for invert (cf)	27	
Total volume of concrete (cf)	205	
Total weight of concrete (lbs)		30,752
Volume of wet soil over base extension (cf)	-70	
Buoyant weight of wet soil column (lbs)		-4,011
Volume of dry soil over base extension (cf)	25	•
Dead weight of dry soil column (lbs)	1000	3,000
Total downward force (lbs)		29,741
, ,		,
Factor of safety against flotation	38.74	

ZEBULO- STORAGE MAY

Figure 2.4 Kirpich Equation (Source: North Carolina Erosion and Sediment Control Planning and Design Manual)

DA-1 Tc (PRE) = 3 MIN SAT 5 MIN PA-1 Tc (POST) = 8.5 MIN SOT 5 MIN DA-2 Tc (PROST) = 2 MIN SOT 5 MIN DA-2 Tc (POST) = 4 MIN SOT 5 MIN

Pre and Post Design Calculations (Hydraflow)

NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.8479°, Longitude: -78.309° Elevation: 266 ft**

source: ESRI Maps
** source: USGS

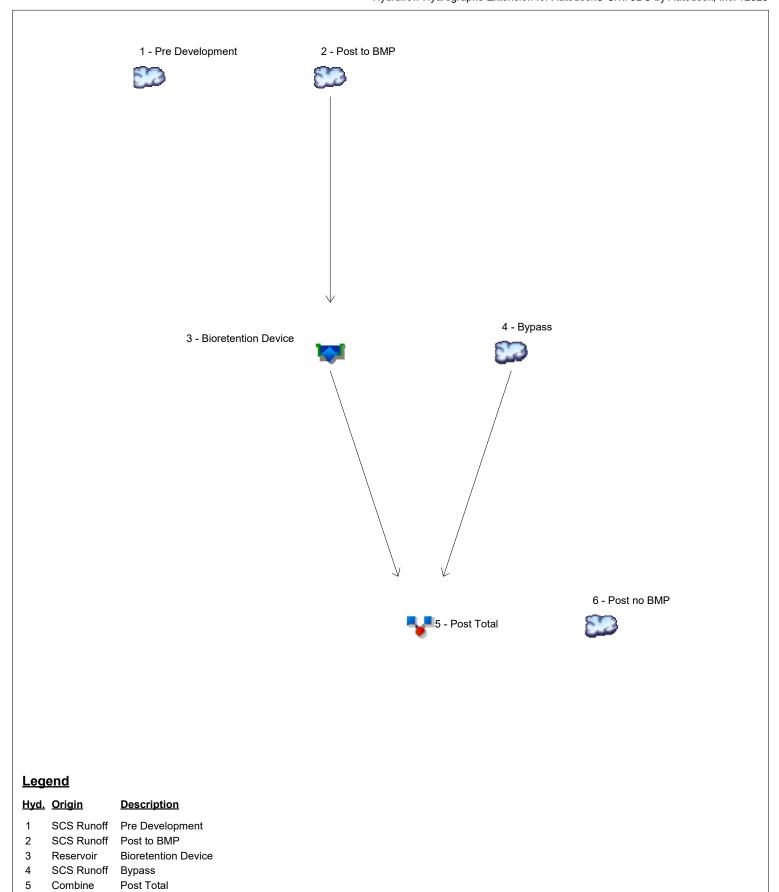
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	6-based p	oint preci	pitation fr		estimates			ce interva	ıls (in incl	nes) ¹
Duration					ge recurrenc					
	1	2	5	10	25	50	100	200	500	1000
5-min	0.404 (0.369-0.444)	0.466 (0.427-0.511)	0.529 (0.483-0.578)	0.599 (0.547-0.655)	0.668 (0.607-0.730)	0.726 (0.657-0.794)	0.778 (0.700-0.849)	0.825 (0.738-0.902)	0.878 (0.779-0.962)	0.929 (0.817-1.02)
10-min	0.645 (0.589-0.709)	0.746 (0.683-0.817)	0.847 (0.774-0.926)	0.958 (0.874-1.05)	1.06 (0.968-1.16)	1.16 (1.05-1.26)	1.24 (1.11-1.35)	1.31 (1.17-1.43)	1.39 (1.23-1.52)	1.46 (1.29-1.60)
15-min	0.807 (0.736-0.886)	0.938 (0.858-1.03)	1.07 (0.979-1.17)	1.21 (1.11-1.33)	1.35 (1.23-1.48)	1.46 (1.32-1.60)	1.56 (1.40-1.71)	1.65 (1.48-1.80)	1.75 (1.55-1.92)	1.84 (1.61-2.02)
30-min	1.11 (1.01-1.22)	1.30 (1.18-1.42)	1.52 (1.39-1.66)	1.76 (1.60-1.92)	2.00 (1.82-2.18)	2.21 (2.00-2.41)	2.39 (2.15-2.61)	2.57 (2.30-2.81)	2.78 (2.47-3.05)	2.98 (2.61-3.26)
60-min	1.38 (1.26-1.52)	1.62 (1.49-1.78)	1.95 (1.78-2.13)	2.29 (2.09-2.50)	2.66 (2.42-2.91)	2.99 (2.70-3.27)	3.30 (2.96-3.60)	3.60 (3.22-3.94)	3.99 (3.54-4.37)	4.34 (3.82-4.76)
2-hr	1.61 (1.46-1.78)	1.91 (1.74-2.09)	2.32 (2.10-2.55)	2.75 (2.49-3.02)	3.26 (2.94-3.58)	3.73 (3.34-4.08)	4.18 (3.72-4.58)	4.66 (4.12-5.10)	5.28 (4.63-5.78)	5.86 (5.09-6.43)
3-hr	1.71 (1.55-1.90)	2.02 (1.84-2.24)	2.47 (2.24-2.73)	2.95 (2.67-3.25)	3.53 (3.18-3.89)	4.08 (3.64-4.48)	4.61 (4.09-5.07)	5.19 (4.57-5.70)	5.96 (5.19-6.56)	6.70 (5.77-7.39)
6-hr	2.05 (1.86-2.27)	2.43 (2.21-2.68)	2.96 (2.69-3.26)	3.54 (3.22-3.90)	4.26 (3.84-4.67)	4.93 (4.42-5.40)	5.61 (4.98-6.14)	6.33 (5.57-6.92)	7.33 (6.36-8.01)	8.28 (7.09-9.07)
12-hr	2.41 (2.20-2.66)	2.86 (2.62-3.14)	3.50 (3.20-3.85)	4.22 (3.83-4.63)	5.10 (4.61-5.58)	5.95 (5.34-6.49)	6.81 (6.04-7.42)	7.75 (6.80-8.43)	9.05 (7.81-9.85)	10.3 (8.76-11.2)
24-hr	2.85 (2.65-3.08)	3.45 (3.20-3.73)	4.38 (4.06-4.73)	5.13 (4.74-5.54)	6.19 (5.70-6.68)	7.06 (6.47-7.62)	7.99 (7.28-8.63)	8.98 (8.14-9.71)	10.4 (9.34-11.3)	11.6 (10.3-12.6)
2-day	3.30 (3.07-3.56)	3.98 (3.70-4.29)	5.01 (4.65-5.40)	5.84 (5.41-6.30)	7.01 (6.47-7.56)	7.97 (7.32-8.60)	8.98 (8.20-9.70)	10.1 (9.13-10.9)	11.6 (10.4-12.6)	12.9 (11.4-14.0)
3-day	3.50 (3.26-3.76)	4.22 (3.93-4.53)	5.28 (4.91-5.67)	6.14 (5.70-6.59)	7.34 (6.78-7.88)	8.32 (7.66-8.94)	9.35 (8.56-10.1)	10.4 (9.50-11.3)	12.0 (10.8-13.0)	13.3 (11.9-14.4)
4-day	3.71 (3.46-3.97)	4.45 (4.16-4.77)	5.55 (5.18-5.94)	6.43 (5.98-6.88)	7.66 (7.10-8.20)	8.67 (8.00-9.29)	9.72 (8.92-10.4)	10.8 (9.88-11.6)	12.4 (11.2-13.4)	13.7 (12.3-14.8)
7-day	4.31 (4.03-4.61)	5.15 (4.82-5.51)	6.34 (5.93-6.78)	7.30 (6.80-7.81)	8.63 (8.02-9.23)	9.70 (8.98-10.4)	10.8 (9.97-11.6)	12.0 (11.0-12.9)	13.6 (12.4-14.7)	15.0 (13.5-16.2)
10-day	4.91 (4.61-5.24)	5.86 (5.49-6.25)	7.11 (6.66-7.58)	8.10 (7.58-8.63)	9.46 (8.82-10.1)	10.6 (9.81-11.2)	11.7 (10.8-12.5)	12.8 (11.8-13.7)	14.4 (13.2-15.5)	15.7 (14.3-16.9)
20-day	6.60 (6.21-7.02)	7.81 (7.35-8.31)	9.32 (8.76-9.91)	10.5 (9.87-11.2)	12.2 (11.4-12.9)	13.5 (12.6-14.3)	14.8 (13.7-15.8)	16.2 (15.0-17.2)	18.0 (16.6-19.3)	19.5 (17.8-20.9)
30-day	8.19 (7.73-8.69)	9.66 (9.12-10.2)	11.3 (10.7-12.0)	12.7 (11.9-13.4)	14.4 (13.5-15.3)	15.8 (14.8-16.7)	17.1 (16.0-18.2)	18.5 (17.2-19.7)	20.4 (18.9-21.7)	21.8 (20.1-23.3)
45-day	10.4 (9.89-11.0)	12.2 (11.6-12.9)	14.1 (13.4-14.9)	15.6 (14.8-16.5)	17.5 (16.6-18.5)	19.0 (17.9-20.1)	20.5 (19.3-21.7)	22.0 (20.6-23.3)	23.9 (22.3-25.4)	25.4 (23.6-27.0)
60-day	12.5 (11.9-13.2)	14.6 (13.9-15.4)	16.7 (15.9-17.6)	18.3 (17.4-19.3)	20.4 (19.3-21.5)	22.0 (20.8-23.2)	23.6 (22.2-24.9)	25.1 (23.6-26.5)	27.1 (25.4-28.7)	28.6 (26.7-30.3)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

Watershed Model Schematic

Project: Zevbulon.gpw

SCS Runoff Post no BMP

6

Wednesday, 03 / 13 / 2024

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.		Inflow hyd(s)	Peak Outflow (cfs)								Hydrograph
			1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		6.471	10.29			23.44				Pre Development
2	SCS Runoff		16.68	21.27			34.87				Post to BMP
3	Reservoir	2	4.764	5.878			19.97				Bioretention Device
4	SCS Runoff		0.901	1.721			4.722				Bypass
5	Combine	3, 4	5.282	7.058			23.01				Post Total
6	SCS Runoff		17.10	22.51			38.89				Post no BMP

Proj. file: Zevbulon.gpw

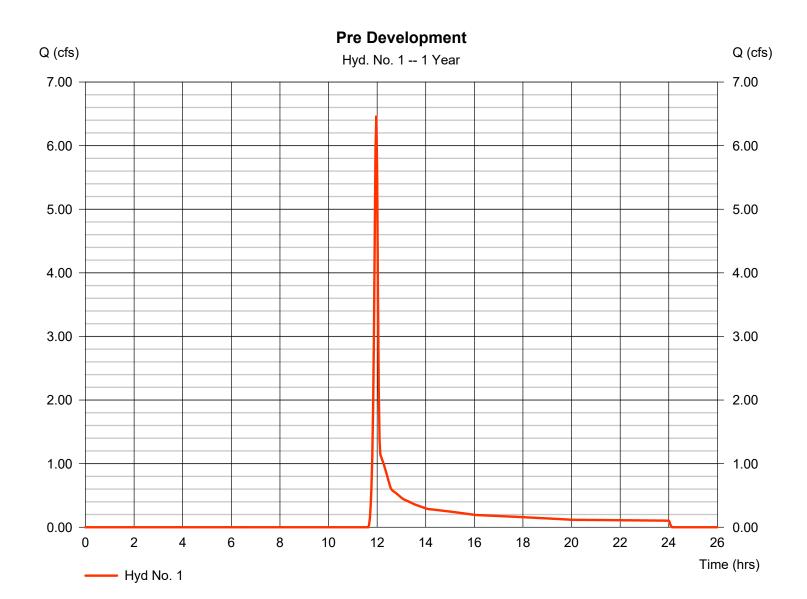
Wednesday, 03 / 13 / 2024

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	6.471	2	718	13,646				Pre Development		
2	SCS Runoff	16.68	2	716	34,266				Post to BMP		
3	Reservoir	4.764	2	724	34,006	2	312.72	14,228	Bioretention Device		
4	SCS Runoff	0.901	2	718	2,249				Bypass		
5	Combine	5.282	2	722	36,255	3, 4			Post Total		
6	SCS Runoff	17.10	2	716	34,592				Post no BMP		
Zevbulon.gpw					Return	Period: 1 Y	ear	Wednesda	Wednesday, 03 / 13 / 2024		

Hydrograph Report

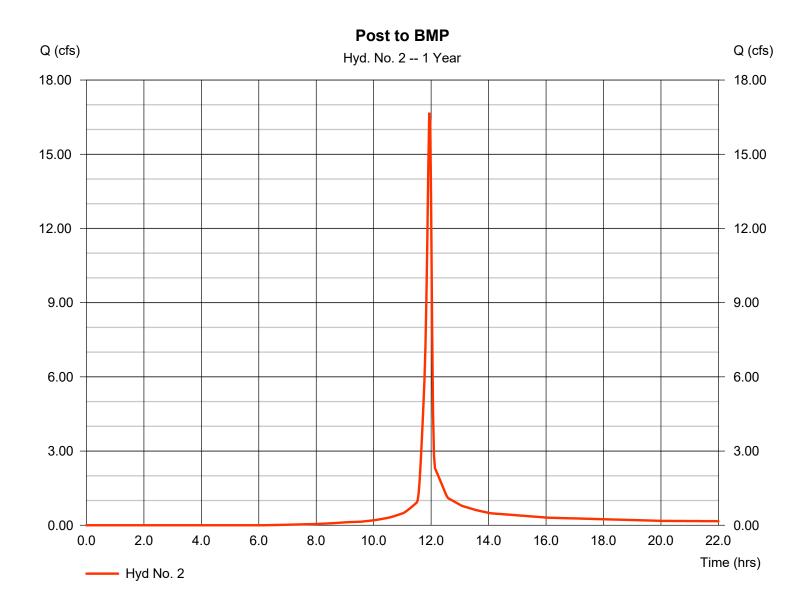

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 1

Pre Development

Hydrograph type Peak discharge = SCS Runoff $= 6.471 \, \text{cfs}$ Storm frequency Time to peak $= 11.97 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 13,646 cuft Drainage area Curve number = 6.400 ac= 68 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

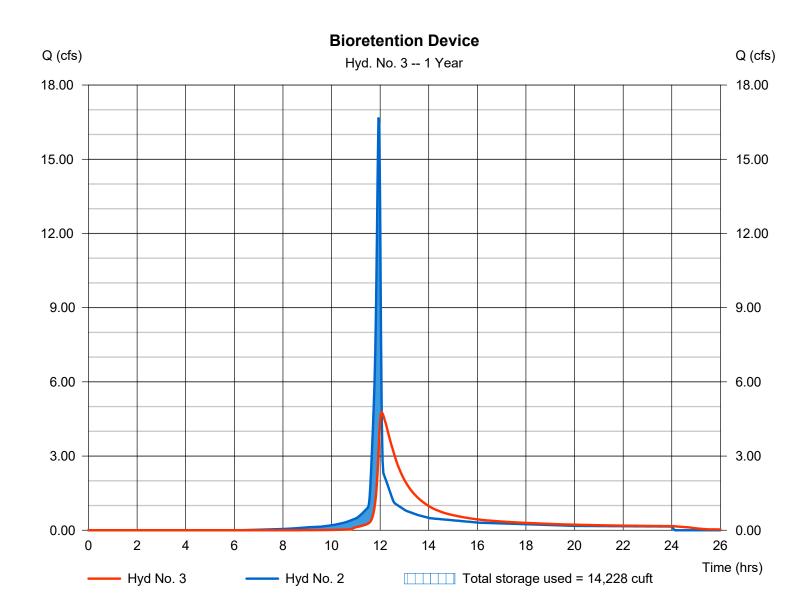
Wednesday, 03 / 13 / 2024

Hyd. No. 2

Post to BMP

Hydrograph type = SCS Runoff Peak discharge = 16.68 cfsStorm frequency Time to peak $= 11.93 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 34,266 cuft Drainage area = 5.300 acCurve number = 89 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Wednesday, 03 / 13 / 2024

Hyd. No. 3

Bioretention Device

Hydrograph type = 4.764 cfs= Reservoir Peak discharge Storm frequency Time to peak = 12.07 hrs= 1 yrsTime interval = 2 min Hyd. volume = 34,006 cuftInflow hyd. No. = 2 - Post to BMP Max. Elevation = 312.72 ft= Bioretention = 14,228 cuft Reservoir name Max. Storage

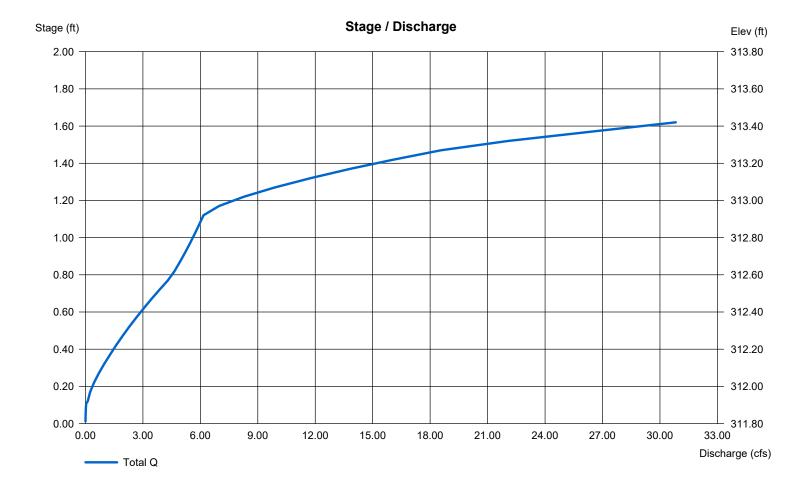
Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Pond No. 1 - Bioretention

Pond Data

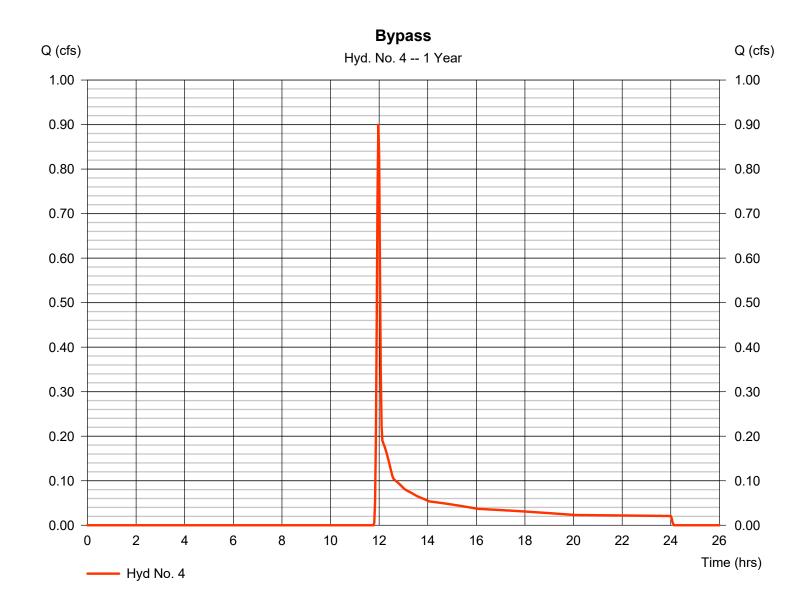

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 311.80 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	311.80	15,908	0	0
0.12	312.00	16,310	1,933	1,933
0.62	312.50	17,258	8,392	10,325
1.12	313.00	18,213	8,868	19,193
1.62	313.50	18,700	9,228	28,421

Culvert / Orifice Structures Weir Structures [PrfRsr] [A] [B] [C] [A] [B] [C] [D] 6.00 8.00 = 16.00 30.00 0.00 0.00 Rise (in) = 24.000.00 Crest Len (ft) = 24.00 6.00 24.00 0.00 Crest El. (ft) = 313.00 313.35 0.00 0.00 Span (in) Weir Coeff. 3.33 No. Barrels = 1 0 = 3.332.60 3.33 Invert El. (ft) = 308.00311.80 312.00 0.00 Weir Type = 1 Broad = 100.00 0.50 0.50 0.00 Length (ft) Multi-Stage = Yes No No No = 0.500.50 0.50 n/a Slope (%) N-Value = .013 .013 .013 n/a Orifice Coeff. 0.60 0.60 = 0.600.60 Exfil.(in/hr) = 0.000 (by Contour) Multi-Stage = n/aYes Yes No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 4

Bypass

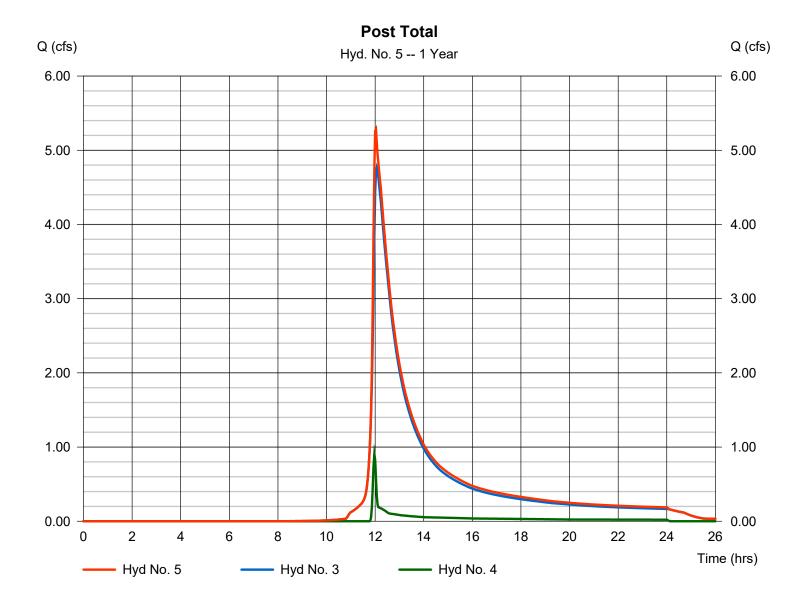
Hydrograph type Peak discharge = SCS Runoff = 0.901 cfsStorm frequency Time to peak $= 11.97 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 2.249 cuft Drainage area Curve number = 1.660 ac= 62 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

= 5.282 cfs

 $= 12.03 \, hrs$

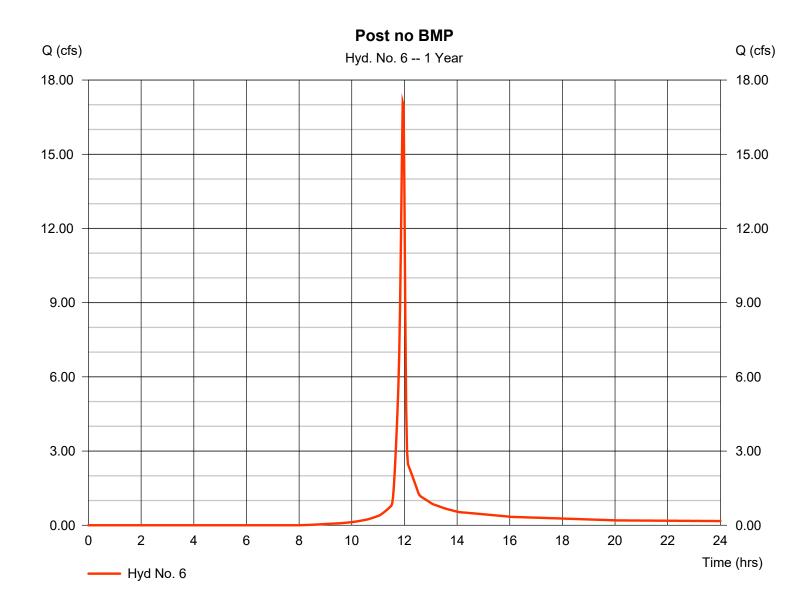

= 1.660 ac

= 36,255 cuft

Hyd. No. 5

Post Total

Hydrograph type= CombinePeak dischargeStorm frequency= 1 yrsTime to peakTime interval= 2 minHyd. volumeInflow hyds.= 3, 4Contrib. drain. area


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 6

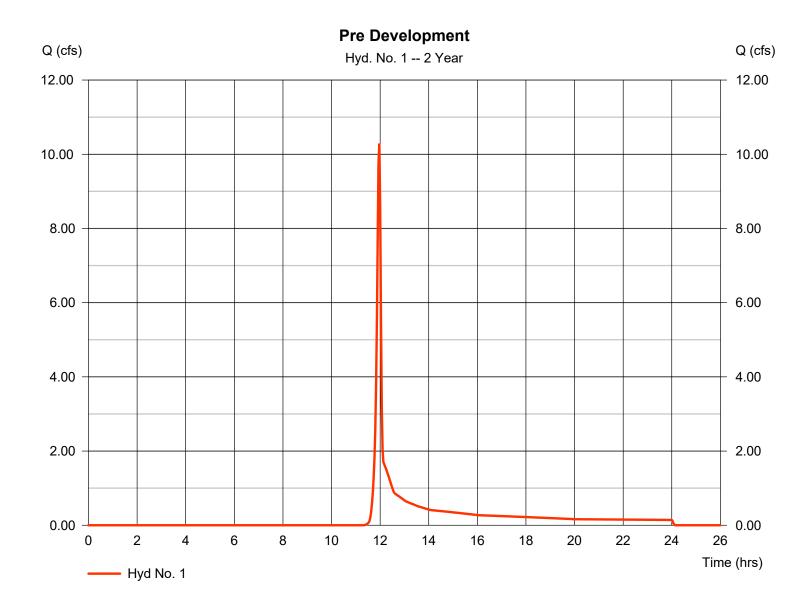
Post no BMP

Hydrograph type Peak discharge = SCS Runoff = 17.10 cfsStorm frequency Time to peak $= 11.93 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 34,592 cuft Drainage area Curve number = 6.400 ac= 85 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

łyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.29	2	718	20,906				Pre Development
2	SCS Runoff	21.27	2	716	44,185				Post to BMP
3	Reservoir	5.878	2	724	43,925	2	312.94	18,078	Bioretention Device
4	SCS Runoff	1.721	2	718	3,745				Bypass
5	Combine	7.058	2	720	47,669	3, 4			Post Total
6	SCS Runoff	22.51	2	716	45,819				Post no BMP
Zev	bulon.gpw				Return F	Period: 2 Yo	ear	Wednesda	ıy, 03 / 13 / 2024

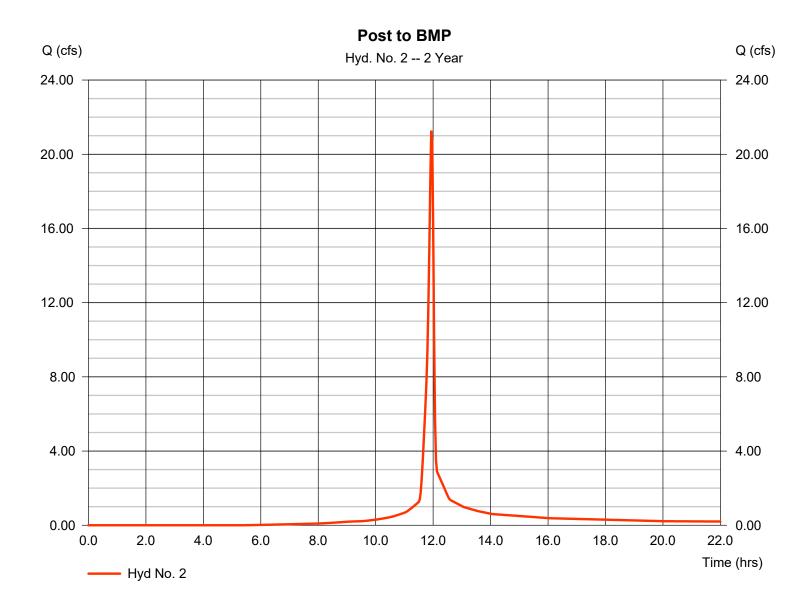

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 1

Pre Development

Hydrograph type = SCS Runoff Peak discharge = 10.29 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 20,906 cuft Drainage area Curve number = 6.400 ac= 68 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

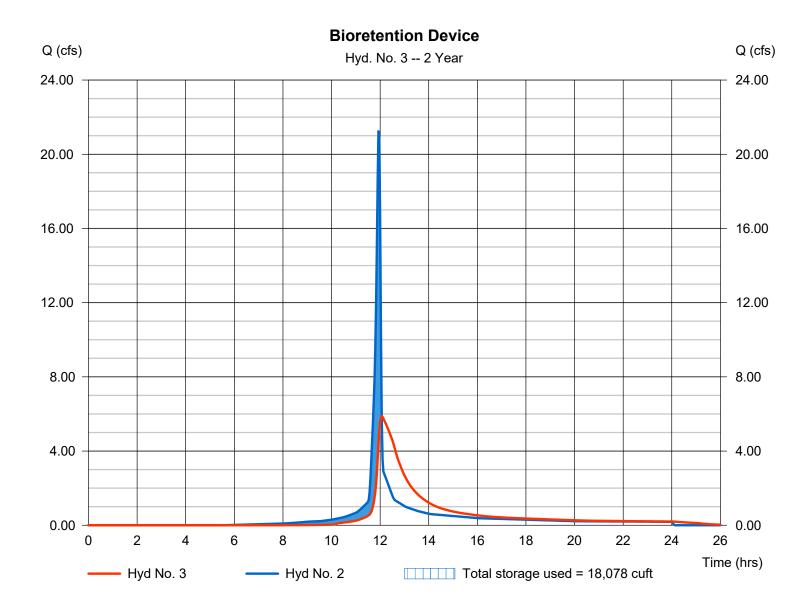
Wednesday, 03 / 13 / 2024

Hyd. No. 2

Post to BMP

Hydrograph type = SCS Runoff Peak discharge = 21.27 cfsStorm frequency = 2 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 44,185 cuft Drainage area = 5.300 acCurve number = 89 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

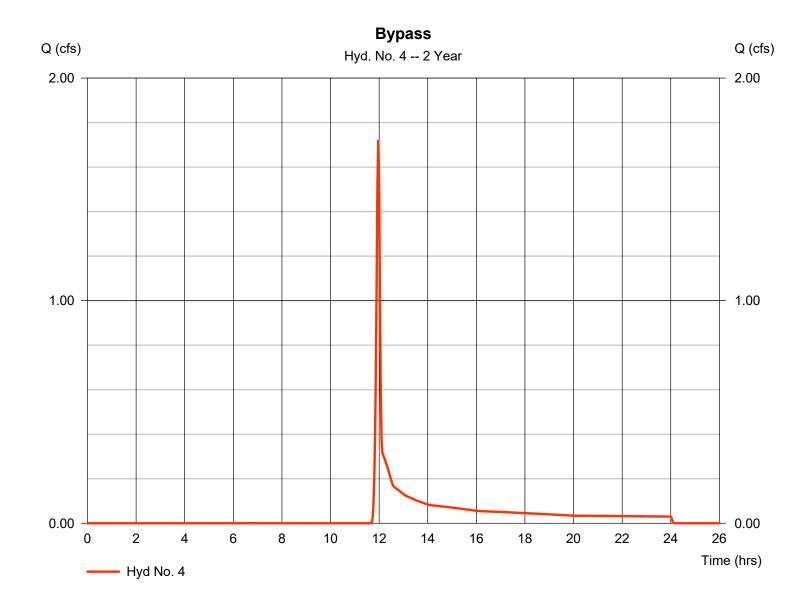

Wednesday, 03 / 13 / 2024

Hyd. No. 3

Bioretention Device

Hydrograph type = Reservoir Peak discharge = 5.878 cfsStorm frequency = 2 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 43,925 cuft Inflow hyd. No. Max. Elevation = 2 - Post to BMP = 312.94 ftReservoir name = Bioretention Max. Storage = 18,078 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 4

Bypass

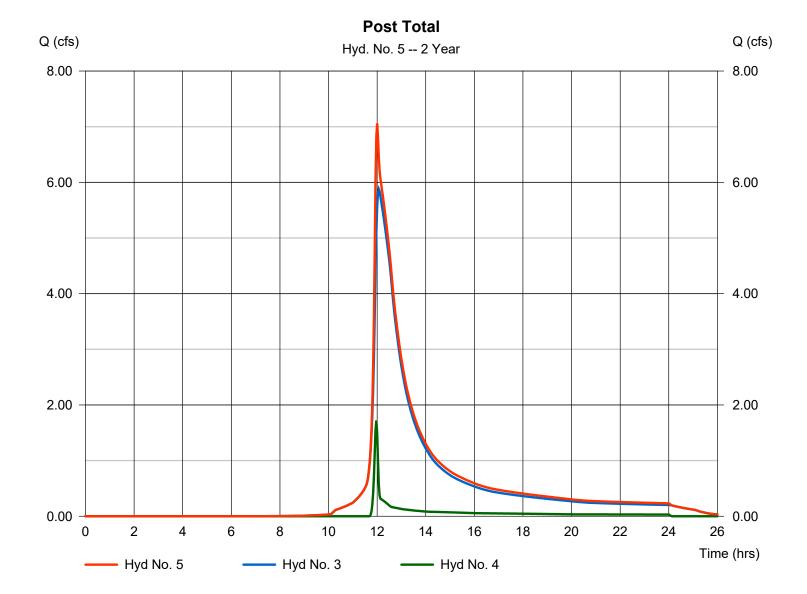
Hydrograph type = 1.721 cfs= SCS Runoff Peak discharge Storm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 3,745 cuftCurve number Drainage area = 1.660 ac= 62 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

= 7.058 cfs

= 12.00 hrs


= 1.660 ac

= 47,669 cuft

Hyd. No. 5

Post Total

Hydrograph type= CombinePeak dischargeStorm frequency= 2 yrsTime to peakTime interval= 2 minHyd. volumeInflow hyds.= 3, 4Contrib. drain. area


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 6

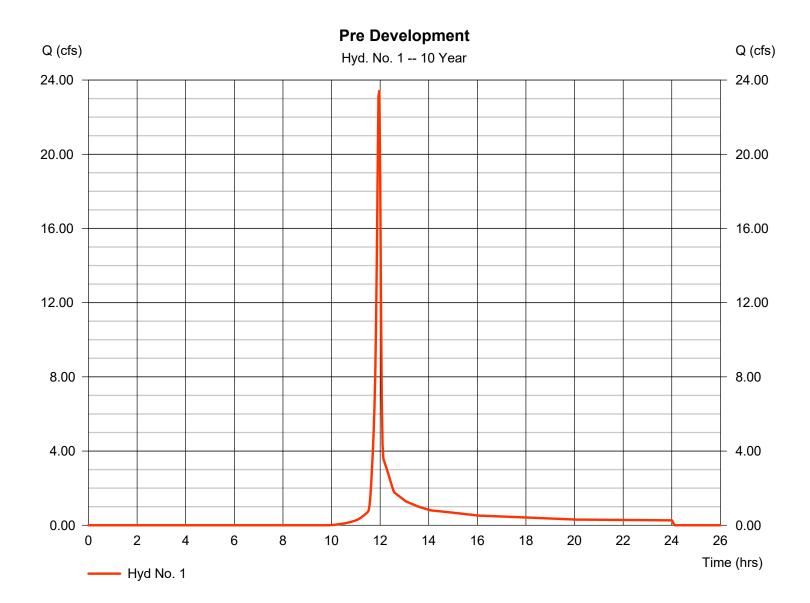
Post no BMP

Hydrograph type = 22.51 cfs= SCS Runoff Peak discharge Storm frequency = 2 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 45,819 cuftDrainage area Curve number = 6.400 ac= 85 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

				Hydrallow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk,							
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	23.44	2	718	46,927				Pre Development		
2	SCS Runoff	34.87	2	716	74,612				Post to BMP		
3	Reservoir	19.97	2	722	74,352	2	313.37	26,021	Bioretention Device		
4	SCS Runoff	4.722	2	718	9,480				Bypass		
5	Combine	23.01	2	720	83,832	3, 4			Post Total		
6	SCS Runoff	38.89	2	716	81,041				Post no BMP		
	bulon.gpw				Poture	Period: 10 \	/oor	Wodpoods	y, 03 / 13 / 2024		

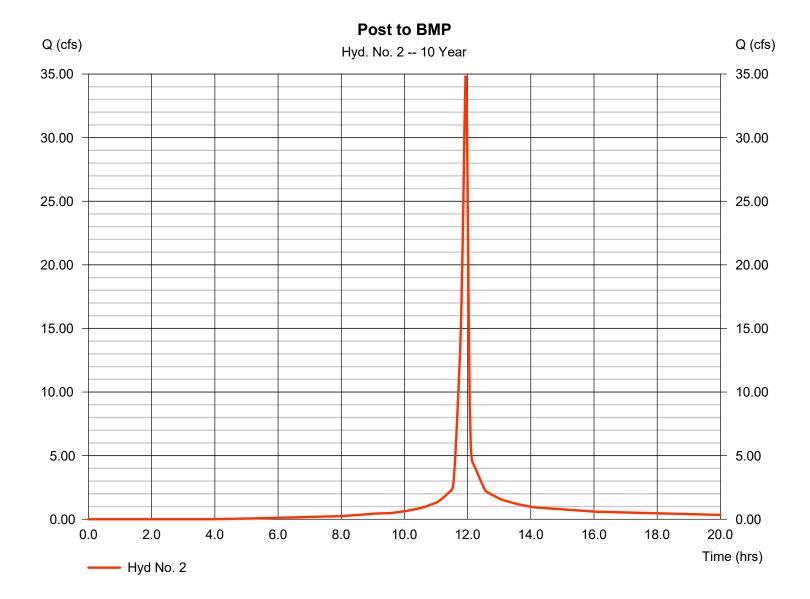

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 1

Pre Development

Hydrograph type = SCS Runoff Peak discharge = 23.44 cfsStorm frequency = 10 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 46,927 cuft Drainage area Curve number = 6.400 ac= 68 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.38 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

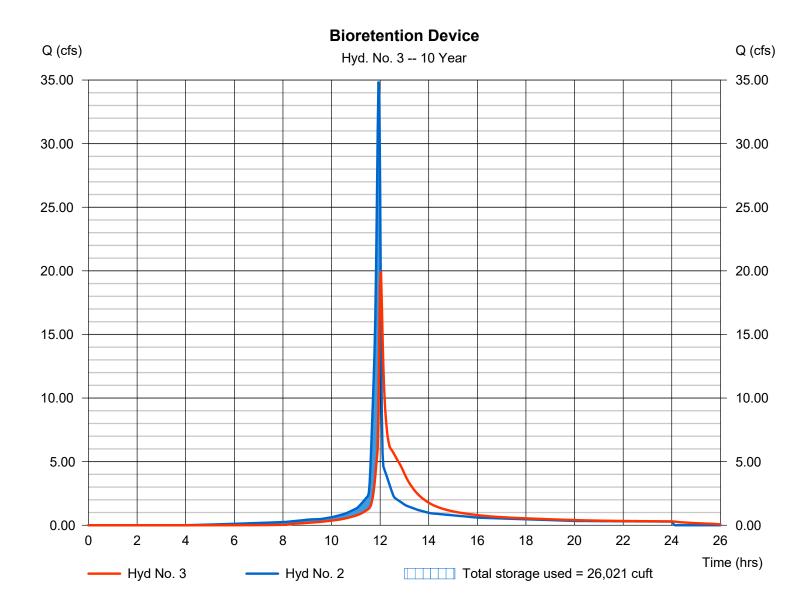
Wednesday, 03 / 13 / 2024

Hyd. No. 2

Post to BMP

Hydrograph type = SCS Runoff Peak discharge = 34.87 cfsStorm frequency = 10 yrsTime to peak $= 11.93 \, hrs$ = 74,612 cuft Time interval = 2 min Hyd. volume Drainage area = 5.300 acCurve number = 89 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.38 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

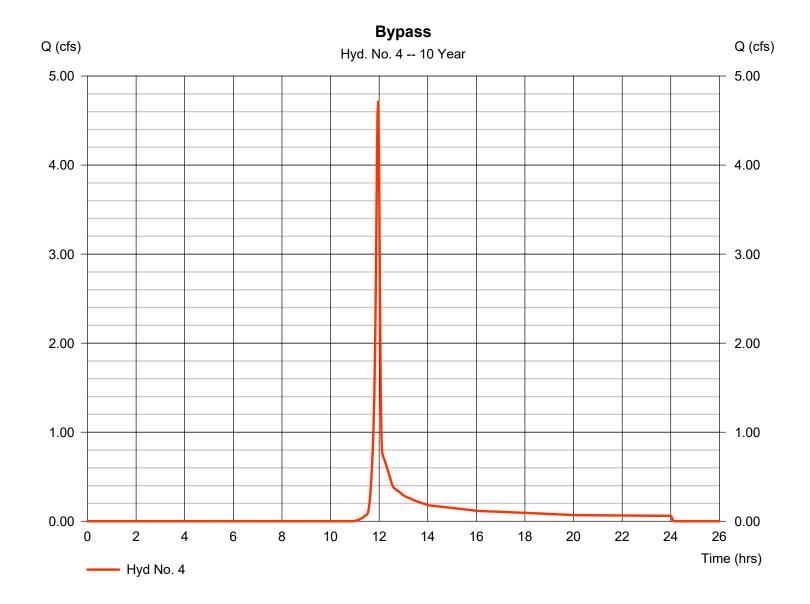

Wednesday, 03 / 13 / 2024

Hyd. No. 3

Bioretention Device

Hydrograph type = Reservoir Peak discharge = 19.97 cfsStorm frequency = 10 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 74,352 cuftInflow hyd. No. Max. Elevation = 313.37 ft= 2 - Post to BMP = 26,021 cuft Reservoir name = Bioretention Max. Storage

Storage Indication method used.

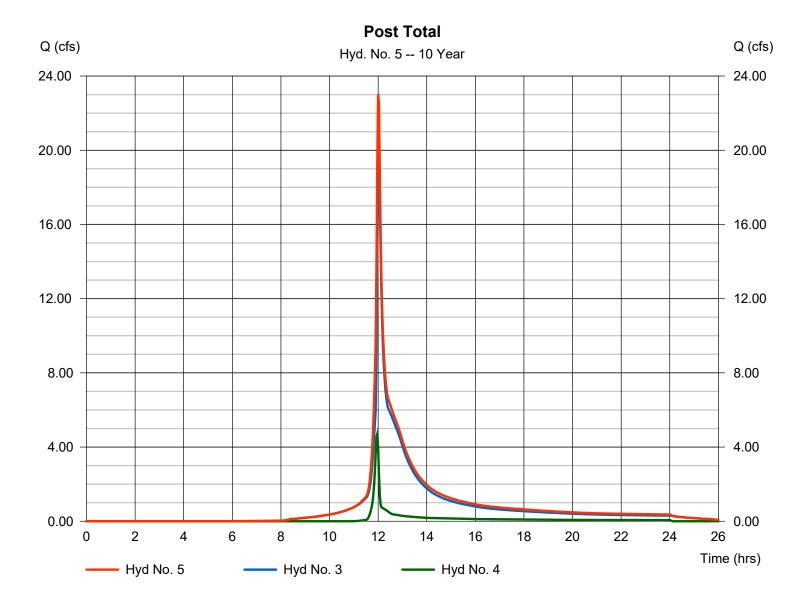

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 4

Bypass

Hydrograph type = SCS Runoff = 4.722 cfsPeak discharge Storm frequency = 10 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 9,480 cuftDrainage area = 1.660 acCurve number = 62 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 5.00 \, \text{min}$ Tc method = User Total precip. = 5.38 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

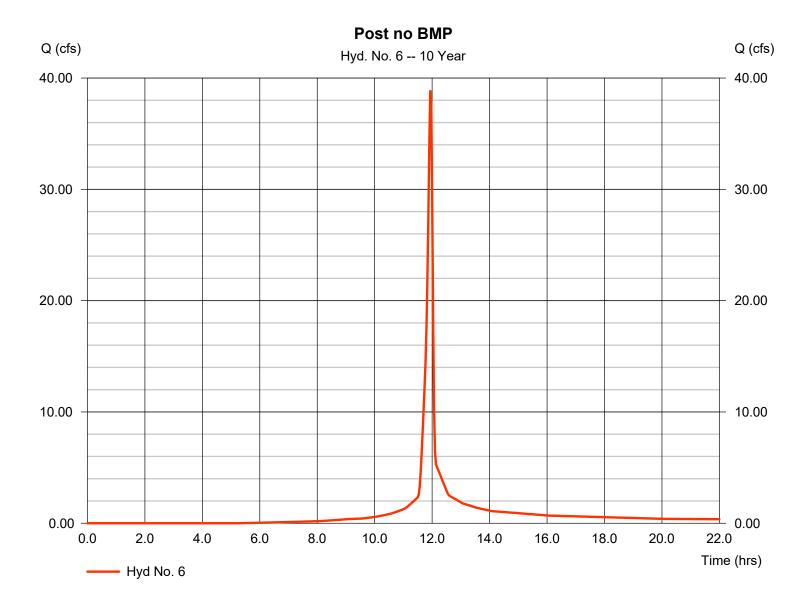

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 5

Post Total

Hydrograph type = Combine Peak discharge = 23.01 cfsStorm frequency = 10 yrsTime to peak = 12.00 hrsTime interval = 2 min Hyd. volume = 83,832 cuft Inflow hyds. Contrib. drain. area = 3, 4= 1.660 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Wednesday, 03 / 13 / 2024

Hyd. No. 6

Post no BMP

Hydrograph type = SCS Runoff Peak discharge = 38.89 cfsStorm frequency = 10 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 81,041 cuft Curve number Drainage area = 6.400 ac= 85 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.38 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Wake County Stormwater Tool

SITE DATA

SITE DATA Page 1

<u>DRAINAGE AREA 1</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

LAND USE & SITE DATA	PRE-DEVELOPMENT			POST-DEVELOPMENT					
Drainage Area (Acres)=		5.3	31		5.31				
Site Acreage within Drainage=		4.	74		4.74				
One-year, 24-hour rainfall (in)=				2.	.85				
Two-year, 24-hour rainfall (in)=				3.4	45				
Ten-year, 24-hour storm (in)=	5.3				38				
Total Lake/Pond Area (Acres)=		0.0	00			0.0	00		
Lake/Pond Area not in the Tc flow path (Acres)=		0.0	00			0.0	00		
Site Land Use (acres):	A B C D				Α	В	С	D	
Pasture		4.34							
Woods, Poor Condition									
Woods, Fair Condition		0.40				0.40			
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition						0.00			
Open Space, Good Condition		0.00				0.75			
Reforestation (in dedicated OS)									
Connected Impervious		0.00				3.59			
Disconnected Impervious									
SITE FLOW	PR	RE-DEVEL	OPMEN	T T _c	POS	T-DEVEL	OPMEN	T Tc	
Sheet Flow									
Length (ft)=		50.	.00		50.00				
Slope (ft/ft)=		0.0)10		0.020				
Surface Cover:		Gra	ass		Pa	ved, Gravel	, or Bare Soil		
n-value=		0.2	240			0.0	11		
T _t (hrs)=		0.1	91			0.0	12		
Shallow Flow									
Length (ft)=		300	0.00			100	.00		
Slope (ft/ft)=		0.0)40			0.0	20		
Surface Cover:		Unpa	aved			Pav	ed		
Average Velocity (ft/sec)=		3.:	23			2.8	37		
T_{t} (hrs)=		0.0	03			0.0)1		
Channel Flow 1									
Length (ft)=		110	0.00			657	.00		
Slope (ft/ft)=		0.0)20			0.0	10		
Cross Sectional Flow Area (ft ²)=		1.0	00			1.2	24		
Wetted Perimeter (ft)=		4.	12			2.8	31		
Channel Lining:		Gra	ass			Concrete,	finished		
n-value=		0.0)35		0.012				
Hydraulic Radius (ft)=		0.:	24			0.4	14		
Average Velocity (ft/sec)=		2.3	34			7.2	20		
T_t (hrs)=		0.0	01		0.03				

DA1 Page 1

<u>DRAINAGE AREA 1</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=	#VALUE!	#VALUE!
T _t (hrs)=	#VALUE!	#VALUE!
Channel Flow 3	#VALUE:	#VALUE:
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
· ·		
Wetted Perimeter (ft)= Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
, , , ,		#VALUE!
Average Velocity (ft/sec)= $T_{t} (hrs)=$		
	#VALUE!	#VALUE!
Tc (hrs)=	#VALUE!	#VALUE!
DECLU TO	DDE DEVEL ODMENT	DOOT DEVEL ORMENT
RESULTS Composite Curve Number	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year}	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q1-year= Volume of runoff (ft³) = Peak Discharge (cfs) = Q*_2-year= Volume of runoff (ft³) = Peak Discharge (cfs) = Q2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT

DA1 Page 2

<u>DRAINAGE AREA 2</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Drainage Area (Acres)	LAND USE & SITE DATA	PRE-DEVELOPMENT			POST-DEVELOPMENT					
One-year, 24-hour rainfall (in)= Two-year, 24-hour storm (in)= Ten-year, 24-hour storm (in)= Total Lake/Pond Area (Acres)= Lake/Pond Area (Acres)= Lake/Pond Area not in the To flow path (Acres)= Site Land Use (acres): A B C D A B C D Woods, Poor Condition Woods, Fair Condition Woods, Fair Condition Woods, Fair Condition Open Space, Fair Condition Open Space, Foor Condition Open Space, Foor Condition Open Space, Foor Condition Open Space, Fair Condition Open Space, Foor C	Drainage Area (Acres)	=	1.	66		1.66				
Two-year, 24-hour rainfall (in)=	Site Acreage within Drainage	=	1.	66		1.66				
Ten-year, 24-hour storm (in)	One-year, 24-hour rainfall (in)	=			2.	.85				
Total Lake/Pond Area (Acres)	Two-year, 24-hour rainfall (in)	=			3.4	45				
Site Land Use (acres): Site Land Use (acres):	Ten-year, 24-hour storm (in)	=			5.3	38				
Pasture	Total Lake/Pond Area (Acres)	=	0.	00						
Pasture	Lake/Pond Area not in the Tc flow path (Acres)	=	0.	00						
Woods, Poor Condition Woods, Fair Condition Woods, Good Condition Woo	Site Land Use (acres):	А	A B C D				В	С	D	
Woods, Fair Condition Woods, Good Condition Woo	Pastur	е	1.66							
Woods, Good Condition	Woods, Poor Condition	n								
Open Space, Poor Condition	Woods, Fair Condition	n								
Open Space, Fair condition	Woods, Good Condition	n								
Open Space, Good Condition Reforestation (in dedicated OS) O.00 O.05	Open Space, Poor Condition	n								
Reforestation (in dedicated OS) 0.00 0.05 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0	Open Space, Fair condition	n								
Connected Impervious	Open Space, Good Condition	n					1.61			
Disconnected Impervious PRE-DEVELOPMENT T _c POST-DEVELOPMENT T _c	Reforestation (in dedicated OS	3)								
TEFLOW PRE-DEVELOPMENT Tc POST-DEVELOPMENT TC	Connected Imperviou	s	0.00				0.05			
Length (ft)= 50.00 50.00	Disconnected Imperviou	s								
Length (ft) = 50.00 50.00	SITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POS	T-DEVE	OPMEN	T Tc	
Slope (ft/ft)	Sheet Flow									
Surface Cover: Grass Grass	Length (ft)	=	50	.00		50.00				
n-value	Slope (ft/ft)	=	0.0	20		0.020				
T _t (hrs) = 0.145 0.145	Surface Cove	r:	Gra	ass		Grass				
Shallow Flow Length (ft)= 235.00 150.00 Slope (ft/ft)= 0.030 0.020 Surface Cover: Unpaved Unpaved Average Velocity (ft/sec)= 2.79 2.28 Tt (hrs)= 0.02 0.02 Channel Flow 1 Length (ft)= 100.00 120.00 Slope (ft/ft)= 0.030 0.020 Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	n-value	=	0.2	40		0.240				
Length (ft)= 235.00 150.00 Slope (ft/ft)= 0.030 0.020 Surface Cover: Unpaved Unpaved Average Velocity (ft/sec)= 2.79 2.28 Tt (hrs)= 0.02 0.02 Channel Flow 1 Length (ft)= 100.00 120.00 Slope (ft/ft)= 0.030 0.020 Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	T _t (hrs)	=	0.1	45		0.145				
Slope (ft/ft)	Shallow Flow									
Surface Cover: Unpaved Unpaved Average Velocity (ft/sec)= 2.79 2.28 T _t (hrs)= 0.02 0.02 Channel Flow 1 Length (ft)= 100.00 120.00 Slope (ft/ft)= 0.030 0.020 Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Length (ft)	=	235	5.00			150	.00		
Average Velocity (ft/sec)= 2.79 2.28 T _t (hrs)= 0.02 0.02 Channel Flow 1 Length (ft)= 100.00 120.00 Slope (ft/ft)= 0.030 0.020 Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Slope (ft/ft)	=	0.0	30			0.0	20		
T _t (hrs)= 0.02 0.02 Channel Flow 1 Length (ft)= 100.00 120.00 Slope (ft/ft)= 0.030 0.020 Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Surface Cove	r:	Unpa	aved			Unpa	aved		
Channel Flow 1 Length (ft)= 100.00 120.00 Slope (ft/ft)= 0.030 0.020 Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Average Velocity (ft/sec)	=	2.	79			2.:	28		
Length (ft)= 100.00 120.00 Slope (ft/ft)= 0.030 0.020 Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	T _t (hrs)	=	0.	02			0.	02		
Slope (ft/ft) = 0.030 0.020	Channel Flow 1									
Cross Sectional Flow Area (ft²)= 1.00 1.00 Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Length (ft)	=	100	.00			120	.00		
Wetted Perimeter (ft)= 4.12 4.12 Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Slope (ft/ft)	=	0.0	30			0.0	20		
Channel Lining: Grass Concrete, finished n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Cross Sectional Flow Area (ft²)	=	1.	00			1.	00		
n-value= 0.035 0.012 Hydraulic Radius (ft)= 0.24 0.24	Wetted Perimeter (ft)	=	4.	12			4.	12		
Hydraulic Radius (ft)= 0.24 0.24	Channel Lining	j:	Gra	ass			Concrete	, finished		
	n-value	=	0.0	35		0.012				
Average Velocity (ft/sec)= 2.87 6.83					0.24					
3 /(1 /	Hydraulic Radius (ft)	=	0.	24	_		0.:	24		
T_{t} (hrs)= 0.01 0.00		+								

DA2 Page 1

Proiect Name:	StorageN		

<u>DRAINAGE AREA 2</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.18	0.17
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ftf³) = Peak Discharge (cfs) = Q* _{2-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft¹) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)		POST-DEVELOPMENT

Project Name:	StorageMax Zebulon

<u>DA SITE SUMMARY</u> STORMWATER PRE-POST CALCULATIONS

		SITE	SUMMAR	Y						
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pupoff (in) = 0	Pre-Deve	elopment	(1-year, 24	hour stor	m)			l .		
Runoff (in) = Q _{pre,1-year} =										
Peak Flow (cfs)=Q _{1-year} =	David Davi	-1	(4	b						
Described from the Confess (company)	1		(1-year, 24	-nour sto	rm)				T T	
Proposed Impervious Surface (acre) =	3.59	0.05								
Runoff (in)=Q _{1-year} =										
Peak Flow (cfs)=Q _{1-year} =										
Increase in volume per DA (ft ³)_1-yr storm= Minimum Volume to be Managed for DA										
HIGH DENSITY REQUIREMENT = (ft ³) =										
TARGET CURVE NUMBER (TCN)				· 						
		Si	te Data							
	s	ITE \SOIL	COMPOSI	TION						
HYDROLOGIC SOIL GRO	UP			Site	Area		<u>%</u>		Target CN	<u>l</u>
A				0.	00	C	1%		N/A	
В				6.	40	10	0%		N/A	
С				0.	00	C	1%		N/A	
D				0.	00	C	1%		N/A	
		То	tal Site Area	a (acres) =			6.	40		
Percent B	JA (Include	s Existing	Lakes/Pond	Areas) =			57	7%		
		Project Density =				High				
		Target Curve Number (TCN) =			N/A					
			CN _{adju}	sted (1-year)=						
Minimum Volume to be Manag	jed (Total S	ite) Per T0	CN Require	ment= ft ³ =						
	S	ite Nitrog	en Loading	Data	•					
HSG			TN export			Site			N	
nou			coefficient (lbs/ac/yr)		Acreage			Export		
Pasture			1.2			0.00			0.00	
Woods, Poor Condition			1.6			0.00		0.00		
Woods, Fair Condition			1.2			0.40			0.48	
Woods, Good Condition			0.8			0.00			0.00	
Open Space, Poor Condition			1.0			0.00			0.00	
Open Space, Fair Condition			0.8			0.00			0.00	
Open Space, Good Condition			0.6			2.36			1.42	
Reforestation (in dedicated OS)			0.6			0.00			0.00	
Impervious			21.2			3.64			77.17	
SITE NITROGEN LOADING RATE (lbs/ac/yr)=					12.35				
Nitrogen Loa	ad (lbs/yr)=					79.06				
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_Wer	ndell Only=					56.02				
Si	te Nitroger	Loading	Data For E	xpansion	s Only					
			Existing					New		
Impervious(acres)=			NA					NA		
"Expansion Area" (acres=)										
Nitrogen Load (lbs/yr)=			NA					NA		
SITE NITROGEN LOADING RATE (lbs/ac/yr)=			NA					NA		
Total Site loading rate (lbs/ac/yr)						1				
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)=					N/	Δ				

SITE SUMMARY Page 1

DRAINAGE AREA 1 BMP CALCULATIONS

NORTH CAROLINA											
DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA1 Site Acreage=				4.74							
DA1 Off-Site Acreage=				0.57	•						
Total Required Storage Volume for Site											
TCN Requirement (ft ³)= Total Required Storage Volume for DA1											
1" Rainfall for High Density (ft ³)=											
Will site use underground detention/cistern?	No	Enter %	of the year	water will be reused=		0%		Note: Supporting information/details should be submitted to demonstrate water usage.			
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	HSG		DA1(a) Ac) Off-site	Sub-D (A Site			OA1(c) Ac) Off-site		DA1(d) Ac) Off-site		DA1(e) Ac) Off-site
Pasture		Site	OII-site	Site	OII-Site	Site	OII-site	Site	OII-Site	Site	OII-Site
Woods, Poor Condition											
Woods, Fair Condition		0.97									
Woods, Good Condition		0.97									
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition		0.75									
Reforestation (in dedicated OS)											
Impervious		3.59									
Sub-DA1(a) BMP(s)								1			
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)			Provided Volume that will <u>drawdown 2-5 days</u> (ft³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)
Bioretention	Bioretention with IWS							40%	77.72	31.09	
								0%	46.63	0.00	
		12,692					0%	46.63	0.00		
								0%	46.63	0.00	
								0%	46.63	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):	46.63					63	0.0	10.00	0.00	
Sub-DA1(b) BMP(s)	and the second containing to the second contai										
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi		Provided Volume that will <u>drawdown 2-5 days</u> (ft ²)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided olume that wwdown 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								070	0.00	0.00	
								0%			
								0%	0.00	0.00	

DA1_BMPs Page 1

DRAINAGE AREA 1 BMP CALCULATIONS

Device Name (As Shown on Plan) Device Type Varient Calany Value of disantificant 2 status Entire International disantificant 2 status Entire Internat	NORTH CAROLINA							
Device Name (As Shown on Plan) Device Type Device Ty	Sub-DA1(d) BMP(s)							
Device Name (As Shown on Plan) Device Type Water Quality Votume for Sub-DA (IT) Canadiana 2.5 days (IT) Canadia	If Sub-DA1(d) is connected to upstream subba							
Post BMP Volume of Rand (Titles)	Device Name (As Shown on Plan)	Device Type		Volume that will drawdown 2-5 days	Removal	Nitrogen	Removed	
March Missinger remaining leaving the subbasin (lbs) Missinger remaining leaving the subbasin (lbs) Missinger remaining leaving the most upstream subbasin(lbs) Missinger remaining leaving the subbasin (lbs) Missinger remaining remaining leaving the subbasin (lbs) Missinger remaining leaving the subbasinger remaining leaving the subbasin (lbs) Missinger remaining leaving the subbasi					0%	0.00	0.00	
Total Notice Para BMP Polium of Runoff (13) Para BMP Polium					0%	0.00	0.00	
Total Wittgean remaining leaving the subbasin (the subba					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (ibe) Sub-DAT (io) Isomore (io) Upstream subbasin (ibe) If Isomore (io) Isomor					0%	0.00	0.00	
Sub-DA1(e) IS connected to upstream sub-basin (s). enter the nitrogen leaving the most upstream sub-basin (file): Provided Sub-DA1(e) is connected to upstream sub-basin (file): Provided Sub-DA1(e) is connected to upstream sub-basin (file): Provided Sub-DA1(e) is connected to upstream sub-basin (file): Water Quality Volume (file) work of Sub-DA1(e) in Provided (file) work					0%	0.00	0.00	
Y Sub-DA1(e) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(s) and subbasin(s)	Tot	al Nitrogen remaining leaving the subbasin (lbs):				•	•	•
Device Name (As Shown on Plan) Device Type Device Type Device Type Device Name (As Shown on Plan) Device Type Dev	Sub-DA1(e) BMP(s)							
Device Name (As Shown on Pian) Device Type Device T	If Sub-DA1(e) is connected to upstream subba							
Post BMP Rotting (riches) = Post BMP Runoff (riches) = Q*c_open* Post BMP	Device Name (As Shown on Plan)	Device Type		Volume that will drawdown 2-5 days	Removal	Nitrogen	Removed	
Note					0%	0.00	0.00	
Post BMP Post BMP Volume of Runoff (ffs) Post BMP Volume of Runoff (ff					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (tbs): Start Post BMP CNI(1-year) Post BMP Post BM					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (ibs): DA1					0%	0.00	0.00	
Total Volume Treated (It³)					0%	0.00	0.00	
Total Volume Treated (It²)	Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Nitrogen Mitigated(libs) 31.09		DA	A1 BMP SUMMARY					
1-year, 24-hour storm Post BMP Volume of Runoff (ft ³) _(1-yeau) Post BMP CN(_{1-yeau)} Post BMP Peak Discharge (cfs) = Q _{1-yeau} 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-yeau) Post BMP Runoff (inches) = Q [*] (2-yeau) Post BMP Peak Discharge (cfs) = Q _{1-yeau} Post BMP Nunoff (inches) = Q [*] (2-yeau) Post BMP CN(_{1-yeau}) Post BMP Peak Discharge (cfs) = Q _(2-yeau) 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(1-yeau) Post BMP Runoff (inches) = Q [*] (1-yeau) Post BMP Peak Discharge (cfs) = Q _(2-yeau) Post BMP Volume of Runoff (ft ³) _(1-yeau) Post BMP Volume of Runoff (ft ³) _(1-yeau) Post BMP Peak Discharge (cfs) = Q _(2-yeau)		Total Volume Treated (ft ³)=		#VALUE!				
Post BMP Volume of Runoff (ft³) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP CN _(1-year) = Post BMP Peak Discharge (cfs)= Q _{1-year} = Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Peak Discharge (cfs)= Q _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP CN(_{1-year)} = Post BMP CN(_{1-yea}		Nitrogen Mitigated(lbs)=		31.09				
Post BMP Runoff (inches) = Q*(1-year) = Post BMP Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ff3) _(2-year) = Post BMP Runoff (inches) = Q*(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Runoff (inches) = Q*(10-year) = Post BMP CN((10-year) = Post	1-year, 24-hour storm							
Post BMP CN _(1-year) Post BMP Peak Discharge (cfs) = Q _{1-year} Post BMP Peak Discharge (cfs) = Q _{1-year} Post BMP Volume of Runoff (ff3) _(2-year) Post BMP Runoff (inches) = Q [*] _(2-year) Post BMP CN _(2-year) Post BMP Peak Discharge (cfs) = Q _(2-year) Post BMP Peak Discharge (cfs) = Q _(2-year) Post BMP Runoff (inches) = Q [*] _(10-year) Post BMP Runoff (inches) = Q [*] _(10-year) Post BMP Runoff (inches) = Q [*] _(10-year) Post BMP CN _(10-year) Post BM		Post BMP Volume of Runoff (ft ³) _(1-year) =						
Post BMP Peak Discharge (cfs)= Q _{1 year} 24-hour storm (LID) Post BMP Volume of Runoff (ff3) _(2-year) Post BMP Runoff (inches) = Q ⁺ _(2-year) Post BMP CN _(2-year) Post BMP Peak Discharge (cfs) = Q _(2-year) Post BMP Runoff (inches) = Q ⁺ _(10-year) Post BMP CN _(10-year) Post B								
2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft*) _(10-year) = Post BMP CN(_(0-year) = Post BMP CN(_(0-year) = Post BMP CN(_(0-year) =		Post BMP CN _(1-year) =						
Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_(10-year) =		Post BMP Peak Discharge (cfs)= Q _{1-year} =						
Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (it³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_(10-year) =	2-year, 24-hour storm (LID)							
Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN _(10-year) =		Post BMP Volume of Runoff (ft3) _(2-year) =						
Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (it ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =		Post BMP Runoff (inches) = Q* _(2-year) =						
10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q*_{(10-year)}= Post BMP CN(_{10-year)} =		Post BMP CN _(2-year) =						
Post BMP Volume of Runoff (it ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =								
Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =	10-year, 24-hour storm (DIA)							
Post BMP CN(_{10-year})=		Post BMP Volume of Runoff (ft ³) _(10-year) =						
		Post BMP Runoff (inches) = Q* _(10-year) =						
Post BMP Peak Discharge (cfs)= Q _(10-year) =		Post BMP CN(_{10-year})=						
		Post BMP Peak Discharge (cfs)= Q _(10-year) =						

DA1_BMPs Page 2

DA SITE SUMMARY BMP CALCULATIONS

	BMP SUMMARY	MMARY							
DRAINAGE AREA SUMMARIES									
DRAINAGE AREA:	DA1 DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-I	Pre-Development (1-year, 24-hour storm)	ear, 24-hour	storm)						
Runoff (in)= Q^*_{1-year} =									
Peak Flow (cfs)=Q _{1-year} =									
Post-	Post-Development (1-year, 24-hour storm)	/ear, 24-hour	storm)						
Target Curve Number (TCN) =				NA					
Post BMP Runoff (inches) = $Q^*_{(1-year)}$ =									
Post BMP Peak Discharge (cfs)= Q _{1-year} =									
Post BMP CN _(1-year) =									
	Post-BMP Nitrogen Loading	gen Loading							
TOTAL SITE NITROGEN MITIGATED (Ibs)=				31.09	6				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=				7.50					
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=				24.94	4				

BMP SUMMARY Page 1

O&M Manual

Ope	ration & Ma	intenand	e Agree	ement	
Project Name:	StorageMax				
Project Location: 2					
				EGRES INTO ON KEIPING HEN NOOMAN KEIPING	
Aginton programe aball he kent on the		Cover Page			
Maintenance records shall be kept on the Any deficient SCM elements noted in the	e following SCIVI(s).	I his maintenar	nce record sha	all be kept in a log in a	known set location.
affect the integrity of structures, safety of	the public, and the	pollutant remov	al efficiency o	of the SCM(s)	deliciencies can
,	,				
he SCM(s) on this project include (chec	k all that apply & co	rresponding O8	M sheets will	be added automatical	y):
Infiltration Basin	Quantity:		Location(s):		
Infiltration Trench	Quantity:		Location(s):		
Bioretention Cell Wet Pond	Quantity:			901 Proctor Street	
Stormwater Wetland	Quantity: Quantity:		Location(s):		
Permeable Pavement	Quantity:		Location(s): Location(s):		
Sand Filter	Quantity:		Location(s):		
Rainwater Harvesting	Quantity:	and the second s	Location(s):		
Green Roof	Quantity:		Location(s):		
Level Spreader - Filter Strip	Quantity:		Location(s):		
Proprietary System	Quantity:		Location(s):		
Treatment Swale	Quantity:		Location(s):		
Dry Pond	Quantity:		Location(s):		
Disconnected Impervious Surfa User Defined SCM			Location(s):		
Low Density	Present: Present:	No No	Location(s):		
Low Bensity	rieseit.	INO	Type:		
Title & Organization: Street address:	E. ALLEN MA MEMBER MAN 2700 BRESHAM	ISSEY AGER - SHE	PARD SCHOOL		to any changes to
Phone number(s):	919 706 576	NAME AND ADDRESS OF THE OWNER, WHEN PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PE			
Email:	STORIT @ AOL		ETC @ STOR	AGEMAYNC. COM	
Signature:	1/any			Date:	7.06:23
UANET C. MILLS		, a Notary Publ		1	CAROLINA
County of WAKE		, do hereby cer	tify that	E. ALLEN MASS	SEY
ersonally appeared before me this		day of <u>Uu</u>	LLY 2023	3	_ and
cknowledge the due execution of the Or	perations and Mainte	enance Agreem	ent .		
Vitness my hand and official seal,	and Iru				
PUBLIC ON MILES	Commission E	ixpires: 4	.29 .27		
TOPM EZ					· max max
ORIVI-EL	,	2014 4			7/1/20

Bioretention Maintenance Requirements

Important operation and maintenance procedures:

- Immediately after the bioretention cell is established, the plants will be watered twice weekly if needed until the plants become established (commonly six weeks).
- Snow, mulch or any other material will NEVER be piled on the surface of the bioretention cell.
- Heavy equipment will NEVER be driven over the bioretention cell.
- Special care will be taken to prevent sediment from entering the bioretention cell.
- Once a year, a soil test of the soil media will be conducted.
- Remove top layer of fill media when the pool does not drain quickly. Based on the media
- specification, the pool should drain within 24 hours.

After the bioretention cell is established, it will be inspected quarterly and within 24 hours after every storm event greater than 1.0 inches (or 1.5 inches if in a Coastal County) . Records of operation and maintenance shall be kept in a known set location and shall be available upon request.

Inspection activities shall be performed as follows. Any problems that are found shall be repaired immediately.

SCM element:	Potential problem:	How to remediate the problem:	
The entire bioretention cell	Trash/debris is present.	Remove the trash/debris.	
The perimeter of the bioretention cell	Areas of bare soil and/or erosive gullies have formed.	Regrade the soil if necessary to remove the gully, plant ground cover and water until it is established. Provide lime and a one-time fertilizer application.	
The flow diversion	The structure is clogged.	Unclog the structure and dispose of any sediment off-site.	
structure (if applicable)	The structure is damaged.	Make any necessary repairs or replace if the damage is too much for repair.	
The inlet device	The inlet pipe is clogged (if applicable).	Unclog the pipe and dispose of any sediment in a location where it will not cause impacts to streams or the SCM.	
	The inlet pipe is cracked or otherwise damaged (if applicable).	Repair or replace the pipe.	
	Erosion is occurring in the swale (if applicable).	Regrade the swale if necessary and provide erosion control devices such as reinforced turf matting or riprap to avoid future erosion problems.	
	Stone verge is clogged or covered in sediment (if applicable).	Remove sediment and clogged stone and replace with clean stone.	
	Flow is bypassing pretreatment area and/or gullies have formed.	Regrade if necessary to route all flow to the pretreatment area. Restabilize the area after grading.	
The pretreatment area	Sediment has accumulated to a depth greater than three inches.	Search for the source of the sediment and remedy the problem if possible. Remove the sediment and dispose of it in a location where it will not cause impacts to streams or the SCM.	

Fresion has occurred	Provide additional erosion protection such as reinforced turf matting or riprap if needed to prevent future erosion problems.
Meeds are nresent	Remove the weeds, preferably by hand. If pesticide is used, wipe it on the plants rather than spraying.

	Bioretention Maintenan	ce Requirements (continued)	
SCM element:	Potential problem:	How to remediate the problem:	
	Best professional practices show that pruning is needed to maintain optimal plant health.	Prune according to best professional practices. Maintain lines of sight between 2'-6'.	
Bioretention cell vegetation	Plants are dead, diseased or dying.	Determine the source of the problem: soils, hydrology, disease, etc. Remedy the problem and replace plants. Provide a one-time fertilizer application to establish the ground cover if a soil test indicates it is necessary. If sod was used, check to see that it was not grown on clay or impermeable soils. Replace sod if necessary.	
	Weeds are present.	Remove the weeds, preferably by hand. If pesticide is used, wipe it on the plants rather than spraying.	
	Tree stakes/wires are present six months after planting.	Remove tree stake/wires (which can kill the tree if not removed).	
	Mulch is breaking down or has floated away.	Spot mulch if there are only random void areas. Replace whole mulch layer if necessary. Remove the remaining mulch and replace with triple shredded hard wood mulch at a maximum depth of four inches.	
Bioretention cell mulch and media	Soils and/or mulch are clogged with sediment.	Determine the extent of the clogging - remove and replace either just the top layers or the entire media as needed. Dispose of the spoil in an appropriate off-site location. Use triple shredded hard wood mulch at a maximum depth of four inches. Search for the source of the sediment and remedy the problem if possible.	
	An annual soil test shows that pH has dropped or heavy metals have accumulated in the soil media.	Dolomitic lime shall be applied as recommended per the soil te and toxic soils shall be removed, disposed of properly and replaced with new planting media.	
	Clogging has occurred.	Wash out the underdrain system.	
The underdrain, filter fabric element, and outlet system	Clogging has occurred.	Clean out the drop inlet. Dispose of the sediment in a location where it will not cause impacts to streams or the SCM	
	The drop inlet is damaged	Repair or replace the drop inlet.	
	Erosion or other signs of damage have occurred at the outlet.	Repair the damage and improve the flow dissipation structure.	
The receiving water	Discharges from the bioretention cell are causing erosion or sedimentation in the receiving water.	Contact the local NCDEQ Regional Office.	

STORMWATER CONTOL STRUCTURE BIORETENTION MAINTENANCE AGREEMENT

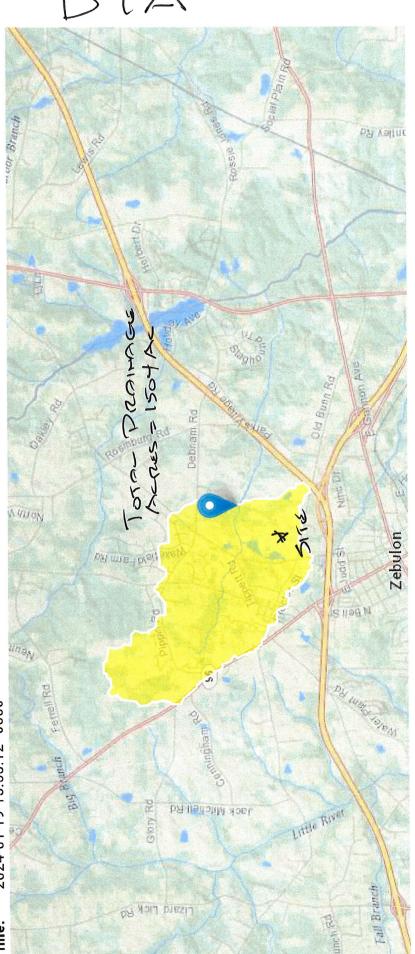
PROJECT: ZEBULON STORAGE MAX RESPONSIBLE PARTY: AUCH MASSE PHONE #: 919 -604-0505 ADDRESS: 2700 GTZSHAM LAKE RO. PALEIGH NC
 I. Monthly or after every runoff producing rainfall, whichever comes first: a. Remove debris from bioretention area. b. Inspect for ponding, washed-out areas, and soil conditions. c. Check for eroded areas of bioretention area and repair before next rainfall. d. Check vegetation conditions within the bioretention area and replace if necessary any damaged plant materials.
 II. Quarterly a. Inspect the collection system (i.e., catch basin, piping, grassed swales) for proper functioning. b. Clear accumulated trash from basin grates, and basin bottoms, and check piping for obstructions. c. Check bioretention inlet pipes for undercutting. Repair if necessary. d. Repair any broken pipes. e. Remulch any void areas by hand whenever needed. f. Replace rip rap at out let pipe that is choked with sediment.
III. Semi-Annually a. Reseed grass swale or border twice yearly. b. Apply new mulch twice yearly.
 a. All components of bioretention area to be kept in working order. b. This property and bioretention area is also subject to the Operations and Maintenance Manual filed in relation to this project. c. The maintenance of the stormwater device(s) shall be the sole responsibility of the Owner. The responsibility for the maintenance of the stormwater device shall pass in the chain of title to the Owner's successor in interest.
I, E. ALLEN MASSEY, hereby acknowledge that I am the financially responsible party for maintenance of this stormwater device.
I will perform the maintenance as outlined above, as part of the Certificate of Compliance with Stormwater Regulations received for this project.
Signature: 7. L. 23 I_ANET_MILS do hereby certify that E_AUEN MASSEY personally appeared before the this day of

My commission expires: 04-29-27

Seal

Downstream Impact Analysis (DIA)

StreamStats Report


1/19/24, 3:56 PM

Region ID: NC

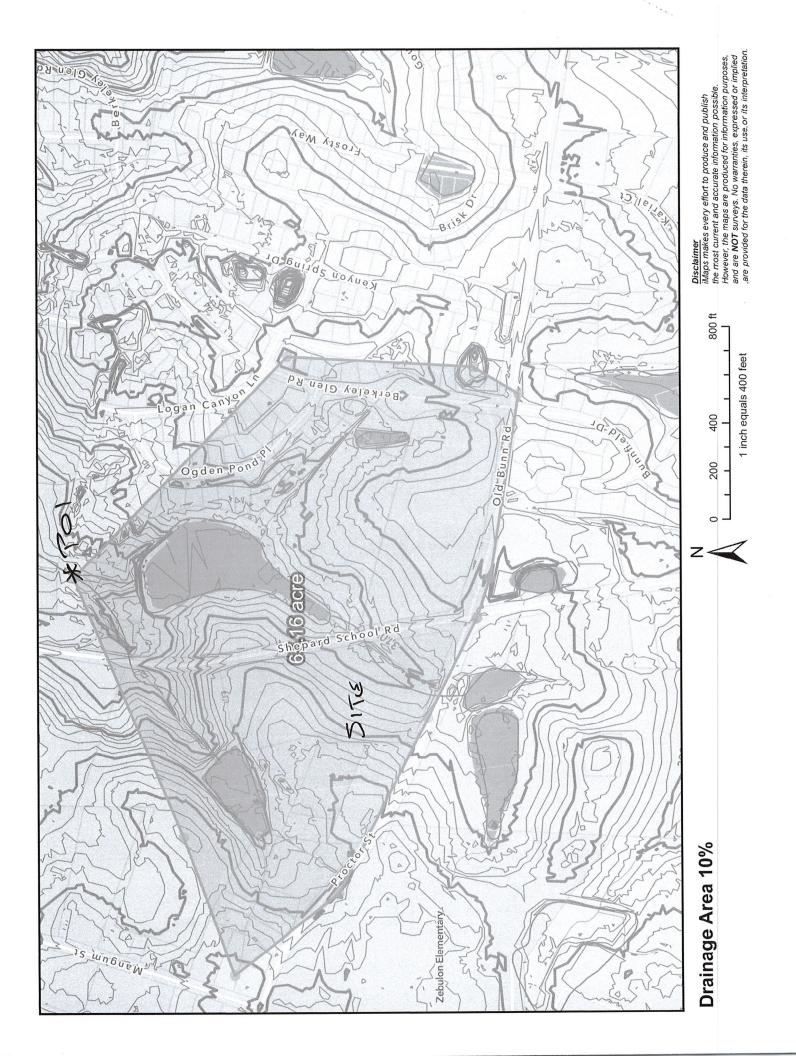
Workspace ID: NC20240119205251951000

Clicked Point (Latitude, Longitude): 35.84674, -78.30538

Time: 2024-01-19 15:53:12 -0500

Collapse All

StreamStats


➤ Basin Characteristics

Parameter Code	Parameter Code Parameter Description	Value Unit	Unit
DRNAREA	Area that drains to a point on a stream	2.35	square miles
LC06IMP	Percentage of impervious area determined from NLCD 2006 impervious dataset	3.26	percent
PCTREG1	Percentage of drainage area located in Region 1 - Piedmont / Ridge and Valley	100	percent
PCTREG2	Percentage of drainage area located in Region 2 - Blue Ridge	0	percent
PCTREG3	Percentage of drainage area located in Region 3 - Sandhills	0	percent
PCTREG4	Percentage of drainage area located in Region 4 - Coastal Plains	0	percent
PCTREG5	Percentage of drainage area located in Region 5 - Lower Tifton Uplands	0	percent

➤ Bankfull Statistics

Bankfull Statistics Parameters [Appalachian Highlands D Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.35	square miles	0.07722	940.1535
		11	1504 MARAS		
Bankfull Statistics Parar	Bankfull Statistics Parameters [Piedmont P Bieger 2015]	. 2015]			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.35	square miles	0.289575	939.99906

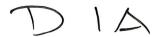
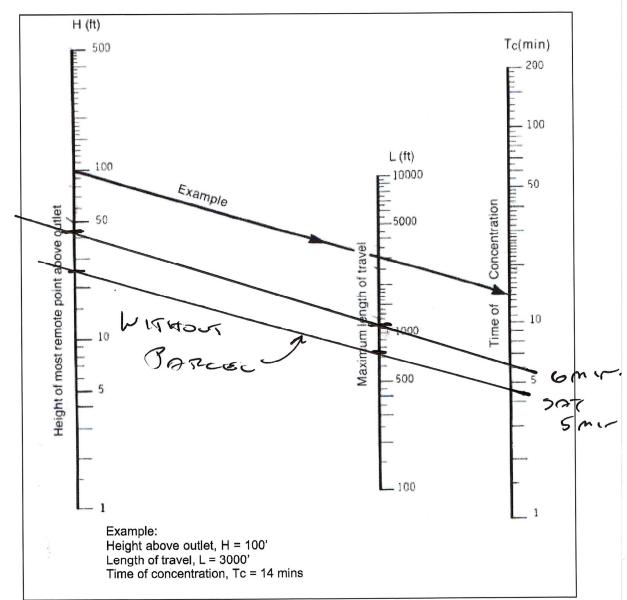



Figure 2.4 Kirpich Equation
(Source: North Carolina Erosion and Sediment Control Planning and Design Manual)

*PRI PEUCLORMENT FLOW PATH = 1133 FEET HEIGHT = 44 FEET To = 6 MI

Curve Number Analysis

Project Location

Calculated By Checked By

				DIA					
	Soils Data		Area v	with lot	Area wi	thout lot			
Soil	Cover Description	CN	Area	CN x Area	Area	CN x Area			
NA	Impervious Cover								
	Roof/Concrete	98	11.00	1078	11.00	1078			
×	Asphalt Pavement	98	4.71	462	2.71	266			
В	Pervious/Semi-Perv Cover								
	Lawn, Good Condition	61							
	Woods, Fair Condition	60	23.45	1407	23.45	1407			
	Grass, Fair Condition	69	25.00	1725	20.80	1435			
/ith 11% c	onnected, 89% unconnected)	65							
	Gravel	85							
С	Pervious/Semi-Perv Cover	•							
7	Lawn, Good Condition	74		on anne					
B	Woods, Fair Condition	73							
	Brush, Good Condition	65							
	Grass, Fair Condition	79							
/ith 11% c	onnected, 89% unconnected)	76							
	Gravel	89							
D	Pervious/Semi-Perv Cover								
	Lawn, Good Condition	80							
	Woods, Good Condition	77							
	Brush, Good Condition	73	1.00	73	0.70	51			
	Landscape	79							
	Gravel	91							
	Total		65.16	4745	58.66	4237			
	Weighted Curve Number			73		72			
Return to the second section of	Total Assurance (Dus)	CF 1C	T						

Total Acerage (Pre)
Total Acerage (Post)

65.16 58.66

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

	.,,,,,,,,,,,,,
1 - DIA Pre	2 - DIA Without Parcel
_	_
533	
Project: Zebulon 10% DIA.gpw	Saturday, 01 / 20 / 2024

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

	Hydrograph	Inflow				Hydrograph					
ο.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff						283.61				DIA Pre
2	SCS Runoff						247.06				DIA Without Parcel

Proj. file: Zebulon 10% DIA.gpw Saturday, 01 / 20 / 2024

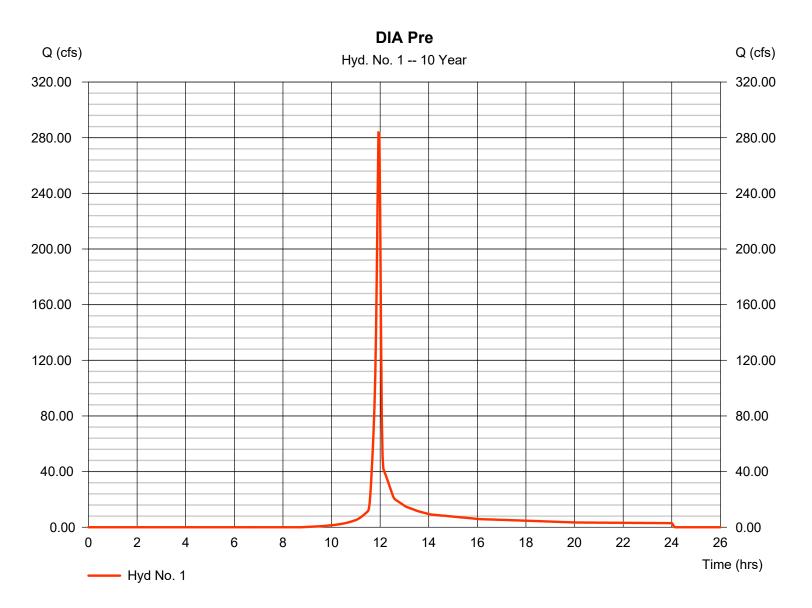
Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

						Tiyaran	ow riyurograpiis	LAGISION IOI AU	lodesk® Civii 3D® by Autodesk, inc. v202.	
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	283.61	2	716	572,581				DIA Pre	
2	SCS Runoff	247.06	2	718	497,956				DIA Without Parcel	
					<u> </u>		,		4.400.40004	
Zebulon 10% DIA.gpw					Return P	eriod: 10 Y	ear	Saturday, 01 / 20 / 2024		

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Saturday, 01 / 20 / 2024

Hyd. No. 1

DIA Pre

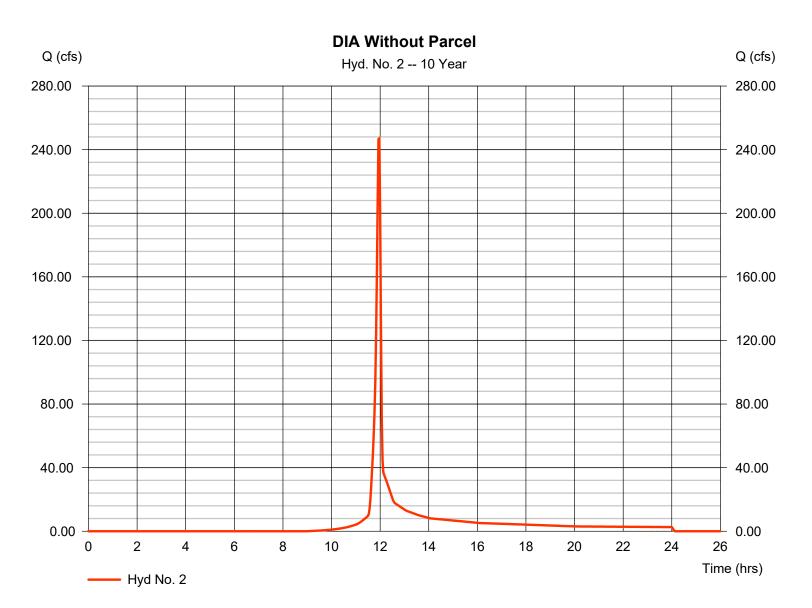
Hydrograph type= SCS RunoffPeak discharge= 283.61 cfsStorm frequency= 10 yrsTime to peak= 11.93 hrsTime interval= 2 minHyd. volume= 572,581 cuft

Drainage area = 65.160 ac Curve number = 73 Hydraulic length = 1133 ftBasin Slope = 4.0 % Tc method = KIRPICH Time of conc. (Tc) $= 6.05 \, \text{min}$ Total precip. = 5.38 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

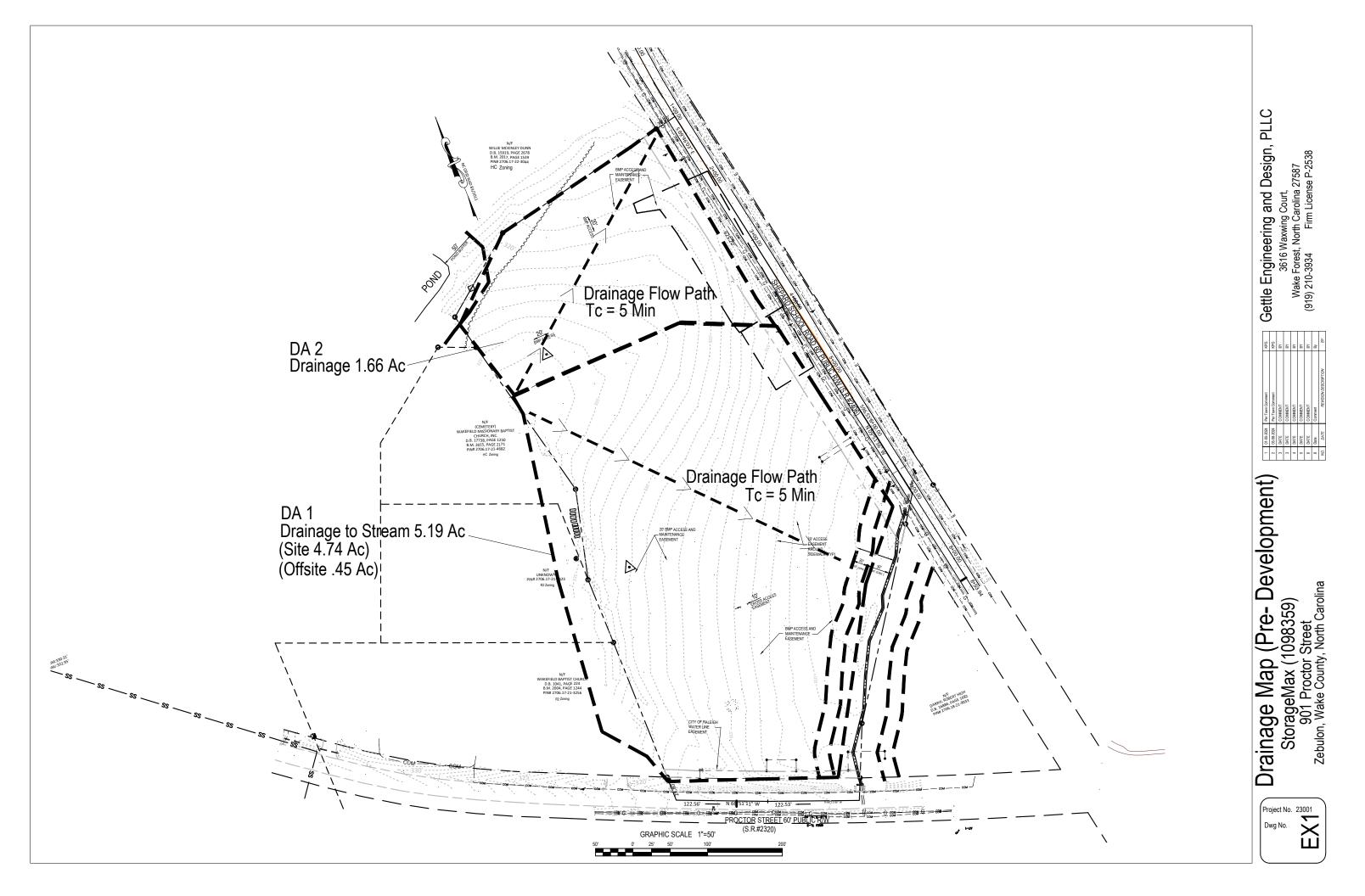
Hydrograph Report

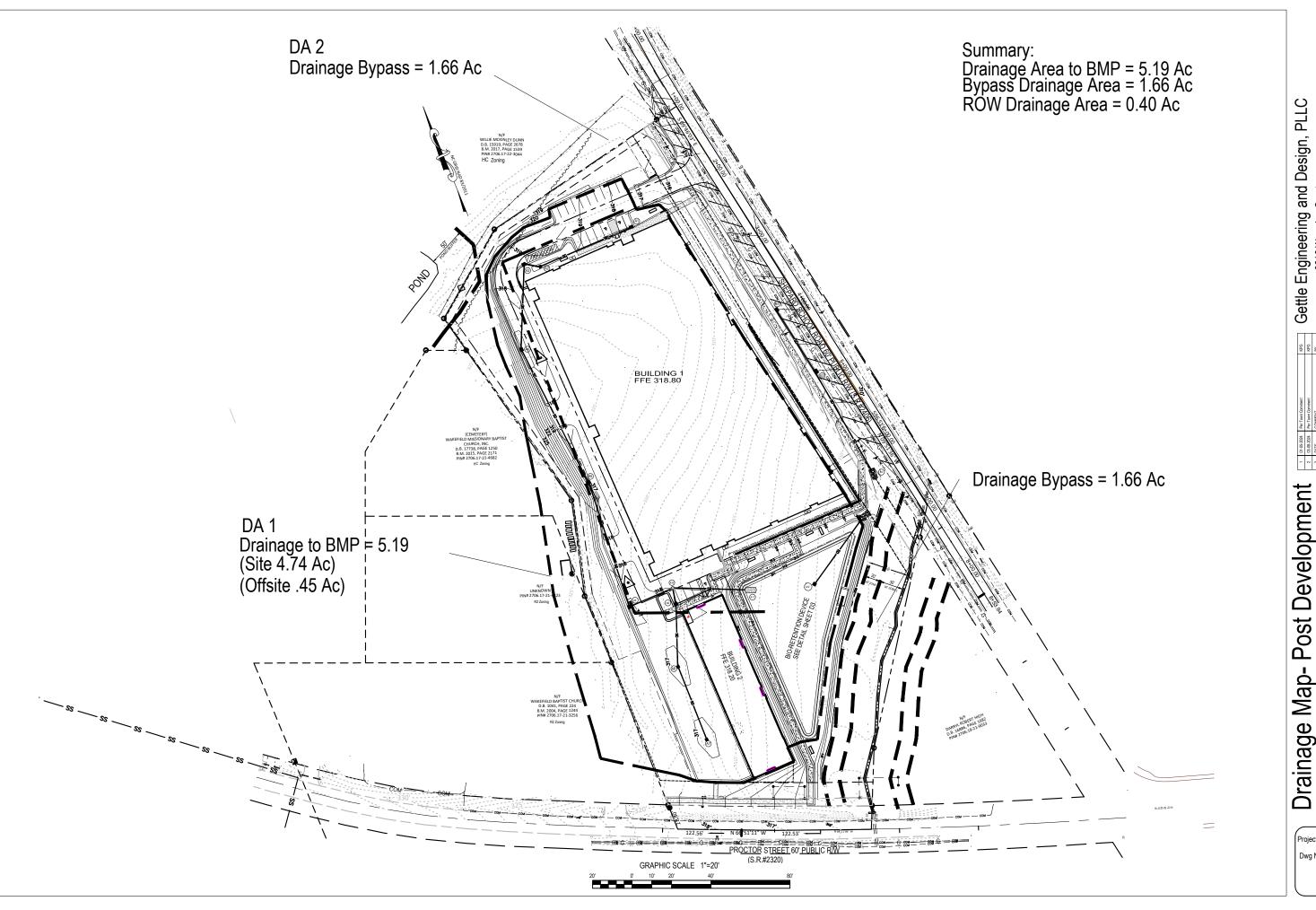
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

= SCS Runoff


Saturday, 01 / 20 / 2024

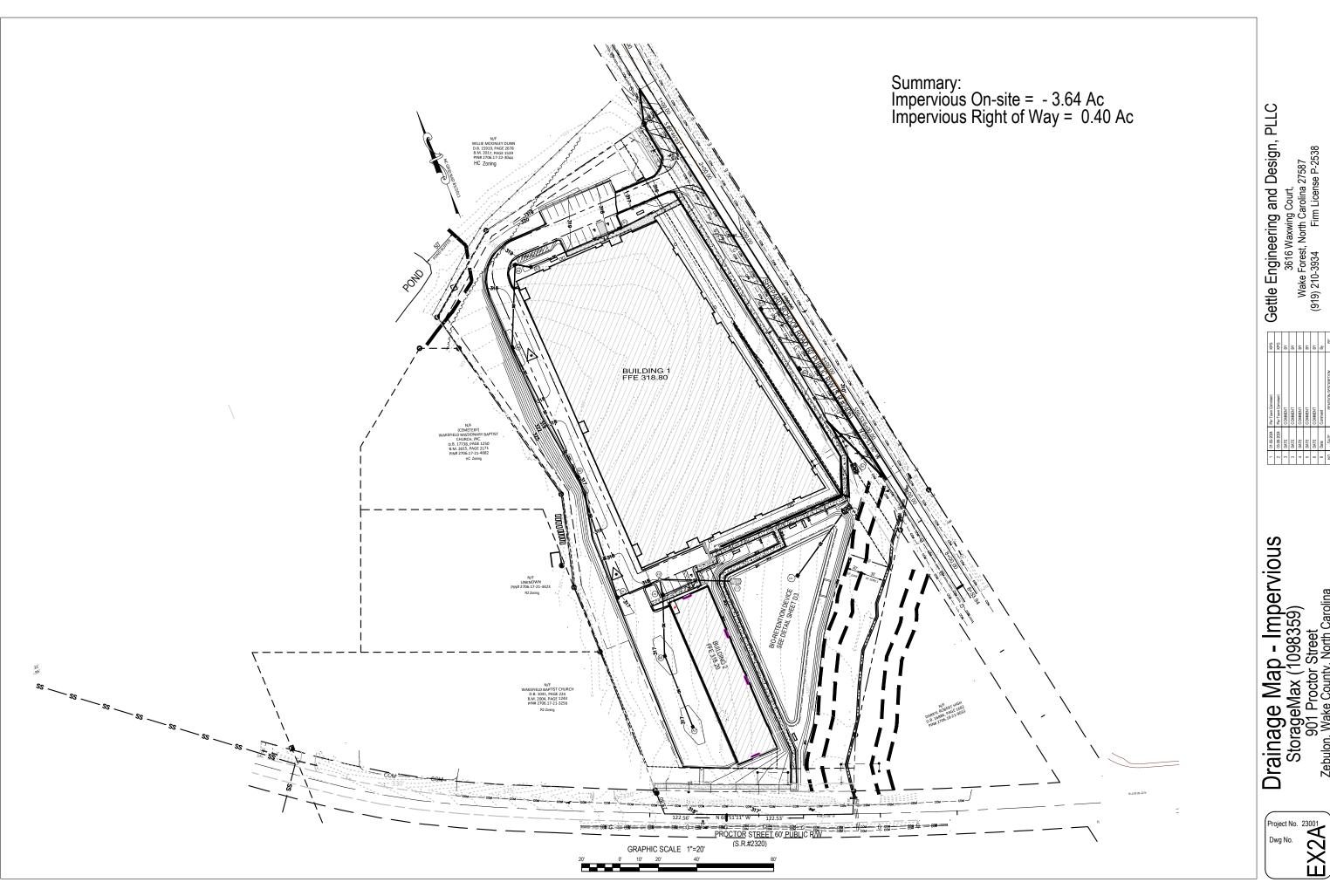
= 247.06 cfs


Hyd. No. 2


DIA Without Parcel

Hydrograph type Peak discharge Storm frequency Time to peak = 10 yrs $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 497,956 cuft Drainage area Curve number = 58.660 ac= 72 = 700 ftHydraulic length Basin Slope = 5.0 % Tc method = KIRPICH Time of conc. (Tc) $= 3.83 \, \text{min}$ Total precip. = 5.38 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Drainage Maps



Gettle Engineering and Design, PLLC
3616 Waxwing Court,
Wake Forest, North Carolina 27587
(919) 210-3934 Firm License P-2538

1	0106-2024	Per Touni Comment	PGG
2	0106-2024	Per Touni Comment	PGG
3	01074	COMMENT	BY
4	DATE	COMMENT	BY
5	DATE	COMMENT	BY
6	DATE	COMMENT	BY
7	01075	COMMENT	BY
8	DATE	COMMENT	BY
9	DATE	COMMENT	BY
10	CAMMENT	BY	

Drainage Map- Post Development StorageMax (1098359) 901 Proctor Street Zebulon, Wake County, North Carolina

Project No. 23001 Dwg No.

Drainage Map - Impervious StorageMax (1098359) 901 Proctor Street Zebulon, Wake County, North Carolina